Advanced Topics in the Arithmetic of Elliptic Curves

Author: Joseph H. Silverman

Publisher: Springer Science & Business Media

ISBN: 1461208513

Category: Mathematics

Page: 528

View: 1913

DOWNLOAD NOW »
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of canonical local height functions.

The Arithmetic of Elliptic Curves

Author: Joseph H. Silverman

Publisher: Springer Science & Business Media

ISBN: 9780387094946

Category: Mathematics

Page: 513

View: 7954

DOWNLOAD NOW »
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

Advanced Topics in Computational Number Theory

Author: Henri Cohen

Publisher: Springer Science & Business Media

ISBN: 1441984895

Category: Mathematics

Page: 581

View: 9990

DOWNLOAD NOW »
Written by an authority with great practical and teaching experience in the field, this book addresses a number of topics in computational number theory. Chapters one through five form a homogenous subject matter suitable for a six-month or year-long course in computational number theory. The subsequent chapters deal with more miscellaneous subjects.

Funktionentheorie

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer-Verlag

ISBN: 3662073528

Category: Mathematics

Page: 541

View: 7570

DOWNLOAD NOW »
Die ersten vier Kapitel vermitteln mit minimalem Begriffsaufwand und geringen Vorkenntnissen zentrale Ergebnisse und Methoden der Funktionentheorie und gipfeln in einem Beweis des kleinen Riemannschen Abbildungssatzes und einer Charakterisierung einfach zusammenhängender Gebiete. Weiter werden behandelt: Elliptische Funktionen (Weierstraßscher und Jacobischer Ansatz), die elementare Theorie der Modulformen einer Variablen, Anwendungen der Funktionentheorie auf die Zahlentheorie (einschließlich eines Beweises des Primzahlsatzes). Die optisch übersichtliche Aufbereitung und eine ungewöhnliche Fülle von sorgfältig ausgesuchten Übungsaufgaben machen den Band auch zur Prüfungsvorbereitung und zum Selbststudium sehr geeignet. Die vorliegende dritte Auflage wurde um ein Symbolverzeichnis erweitert und an verschiedenen Stellen nochmals verbessert.

Public-key Cryptography

American Mathematical Society Short Course, January 13-14, 2003, Baltimore, Maryland

Author: American Mathematical Society. Short Course (2003 : Baltimore),Paul B. Garrett,Daniel Lieman

Publisher: American Mathematical Soc.

ISBN: 0821833650

Category: Mathematics

Page: 183

View: 3749

DOWNLOAD NOW »
This collection of articles grew out of an expository and tutorial conference on public-key cryptography held at the Joint Mathematics Meetings (Baltimore). The book provides an introduction and survey on public-key cryptography for those with considerable mathematical maturity and general mathematical knowledge. Its goal is to bring visibility to the cryptographic issues that fall outside the scope of standard mathematics. These mathematical expositions are intended for experienced mathematicians who are not well acquainted with the subject. The book is suitable for graduate students, researchers, and engineers interested in mathematical aspects and applications of public-key cryptography.

Das BUCH der Beweise

Author: Martin Aigner,Günter M. Ziegler

Publisher: Springer-Verlag

ISBN: 3662577674

Category: Mathematics

Page: 360

View: 8338

DOWNLOAD NOW »
Diese fünfte deutsche Auflage enthält ein ganz neues Kapitel über van der Waerdens Permanenten-Vermutung, sowie weitere neue, originelle und elegante Beweise in anderen Kapiteln. Aus den Rezensionen: “... es ist fast unmöglich, ein Mathematikbuch zu schreiben, das von jedermann gelesen und genossen werden kann, aber Aigner und Ziegler gelingt diese Meisterleistung in virtuosem Stil. [...] Dieses Buch erweist der Mathematik einen unschätzbaren Dienst, indem es Nicht-Mathematikern vorführt, was Mathematiker meinen, wenn sie über Schönheit sprechen.” Aus der Laudatio für den “Steele Prize for Mathematical Exposition” 2018 "Was hier vorliegt ist eine Sammlung von Beweisen, die in das von Paul Erdös immer wieder zitierte BUCH gehören, das vom lieben (?) Gott verwahrt wird und das die perfekten Beweise aller mathematischen Sätze enthält. Manchmal lässt der Herrgott auch einige von uns Sterblichen in das BUCH blicken, und die so resultierenden Geistesblitze erhellen den Mathematikeralltag mit eleganten Argumenten, überraschenden Zusammenhängen und unerwarteten Volten." www.mathematik.de, Mai 2002 "Eine einzigartige Sammlung eleganter mathematischer Beweise nach der Idee von Paul Erdös, verständlich geschrieben von exzellenten Mathematikern. Dieses Buch gibt anregende Lösungen mit Aha-Effekt, auch für Nicht-Mathematiker." www.vismath.de "Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine "very modest approximation" an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ..." Mathematische Semesterberichte, November 1999 "Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern." www.mathematik.de, Mai 2002

Ebene algebraische Kurven

Author: Gerd Fischer

Publisher: Springer-Verlag

ISBN: 3322803112

Category: Mathematics

Page: 177

View: 4835

DOWNLOAD NOW »
Neben den elementaren Dingen, wie Tangenten, Singularitäten und Wendepunkten werden auch schwierigere Begriffe wie lokale Zweige und Geschlecht behandelt. Höhepunkte sind die klassischen Formeln von Plücker und Clebsch, die Beziehungen zwischen verschiedenen globalen und lokalen Invarianten einer Kurve beschreiben.

Zahlentheorie

Algebraische Zahlen und Funktionen

Author: Helmut Koch

Publisher: Springer-Verlag

ISBN: 3322803120

Category: Mathematics

Page: 344

View: 3141

DOWNLOAD NOW »
Hauptziel des Buches ist die Vermittlung des Grundbestandes der Algebraischen Zahlentheorie einschließlich der Theorie der normalen Erweiterungen bis hin zu einem Ausblick auf die Klassenkörpertheorie. Gleichberechtigt mit algebraischen Zahlen werden auch algebraische Funktionen behandelt. Dies geschieht einerseits um die Analogie zwischen Zahl- und Funktionenkörpern aufzuzeigen, die besonders deutlich im Falle eines endlichen Konstantenkörpers ist. Andererseits erhält man auf diese Weise eine Einführung in die Theorie der "höheren Kongruenzen" als eines wesentlichen Bestandteils der "Arithmetischen Geometrie". Obgleich das Buch hauptsächlich algebraischen Methoden gewidmet ist, findet man in der Einleitung auch einen kurzen Beweis des Primzahlsatzes nach Newman. In den Kapiteln 7 und 8 wird die Theorie der Heckeschen L-Reihen behandelt einschließlich der Verteilung der Primideale algebraischer Zahlkörper in Kegeln.

Advances in Cryptology--ASIACRYPT'98

International Conference on the Theory and Application of Cryptology and Information Security, Beijing, China, October 18-22, 1998 : Proceedings

Author: Kazuo Ohta,Dingyi Pei

Publisher: Springer Verlag

ISBN: N.A

Category: Computers

Page: 436

View: 1788

DOWNLOAD NOW »
This book constitutes the refereed proceedings of the International Conference on the Theory and Applications of Cryptology and Information Security, ASIACRYPT'98, held in Beijing, China, in October 1998. The 32 revised full papers presented were carefully reviewed and selected from a total of 118 submissions. The book is divided in topical sections on public-key cryptosystems, elliptic-curve cryptosystems, cryptanalysis, digital signature schemes, finite automata, authentication codes, electronic cash, stream ciphers, cryptographic protocols, key escrow, new cryptography, and information theory.

Elliptic Curves, Modular Forms & Fermat's Last Theorem

Proceedings of a Conference Held in the Institute of Mathematics of the Chinese University of Hong Kong

Author: John Coates,Shing-Tung Yau

Publisher: International Pressof Boston Incorporated

ISBN: 9781571460493

Category: Mathematics

Page: 340

View: 8020

DOWNLOAD NOW »
These proceedings are based on a conference at the Chinese University of Hong Kong, held in response to Andrew Wile's conjecture that every elliptic curve over Q is modular. The survey article describing Wile's work is included as the first article in the present edition.

Dirichlet Forms and Analysis on Wiener Space

Author: Nicolas Bouleau,Francis Hirsch

Publisher: Walter de Gruyter

ISBN: 311085838X

Category: Mathematics

Page: 335

View: 8585

DOWNLOAD NOW »
The subject of this book is analysis on Wiener space by means of Dirichlet forms and Malliavin calculus. There are already several literature on this topic, but this book has some different viewpoints. First the authors review the theory of Dirichlet forms, but they observe only functional analytic, potential theoretical and algebraic properties. They do not mention the relation with Markov processes or stochastic calculus as discussed in usual books (e.g. Fukushima’s book). Even on analytic properties, instead of mentioning the Beuring-Deny formula, they discuss “carré du champ” operators introduced by Meyer and Bakry very carefully. Although they discuss when this “carré du champ” operator exists in general situation, the conditions they gave are rather hard to verify, and so they verify them in the case of Ornstein-Uhlenbeck operator in Wiener space later. (It should be noticed that one can easily show the existence of “carré du champ” operator in this case by using Shigekawa’s H-derivative.) In the part on Malliavin calculus, the authors mainly discuss the absolute continuity of the probability law of Wiener functionals. The Dirichlet form corresponds to the first derivative only, and so it is not easy to consider higher order derivatives in this framework. This is the reason why they discuss only the first step of Malliavin calculus. On the other hand, they succeeded to deal with some delicate problems (the absolute continuity of the probability law of the solution to stochastic differential equations with Lipschitz continuous coefficients, the domain of stochastic integrals (Itô-Ramer-Skorokhod integrals), etc.). This book focuses on the abstract structure of Dirichlet forms and Malliavin calculus rather than their applications. However, the authors give a lot of exercises and references and they may help the reader to study other topics which are not discussed in this book. Zentralblatt Math, Reviewer: S.Kusuoka (Hongo)