An Introduction To Chaotic Dynamical Systems

Author: Robert Devaney

Publisher: CRC Press

ISBN: 0429981937

Category: Science

Page: 360

View: 3950

DOWNLOAD NOW »
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

An Introduction To Chaotic Dynamical Systems

Author: Robert Devaney

Publisher: Westview Press

ISBN: 0786722673

Category: Science

Page: 416

View: 2506

DOWNLOAD NOW »
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Chaos

An Introduction to Dynamical Systems

Author: Kathleen Alligood,Tim Sauer,J.A. Yorke

Publisher: Springer

ISBN: 3642592813

Category: Mathematics

Page: 603

View: 776

DOWNLOAD NOW »
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

A First Course In Chaotic Dynamical Systems

Theory And Experiment

Author: Robert L. Devaney

Publisher: CRC Press

ISBN: 0429972032

Category: Mathematics

Page: 340

View: 1512

DOWNLOAD NOW »
A First Course in Chaotic Dynamical Systems: Theory and Experiment is the first book to introduce modern topics in dynamical systems at the undergraduate level. Accessible to readers with only a background in calculus, the book integrates both theory and computer experiments into its coverage of contemporary ideas in dynamics. It is designed as a gradual introduction to the basic mathematical ideas behind such topics as chaos, fractals, Newton's method, symbolic dynamics, the Julia set, and the Mandelbrot set, and includes biographies of some of the leading researchers in the field of dynamical systems. Mathematical and computer experiments are integrated throughout the text to help illustrate the meaning of the theorems presented. Chaotic Dynamical Systems Software, Labs 1-6 is a supplementary labouratory software package, available separately, that allows a more intuitive understanding of the mathematics behind dynamical systems theory. Combined with A First Course in Chaotic Dynamical Systems , it leads to a rich understanding of this emerging field.

Introduction to the Modern Theory of Dynamical Systems

Author: Anatole Katok,Boris Hasselblatt

Publisher: Cambridge University Press

ISBN: 9780521575577

Category: Mathematics

Page: 802

View: 6755

DOWNLOAD NOW »
This book provides a self-contained comprehensive exposition of the theory of dynamical systems. The book begins with a discussion of several elementary but crucial examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate and up.

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

ISBN: 0387217495

Category: Mathematics

Page: 844

View: 7369

DOWNLOAD NOW »
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms. From the reviews: "Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte für Mathematik

Chaos in Dynamical Systems

Author: Edward Ott

Publisher: Cambridge University Press

ISBN: 9780521010849

Category: Mathematics

Page: 478

View: 1503

DOWNLOAD NOW »
New edition of the best-selling graduate textbook on chaos for scientists and engineers.

An Introduction to Dynamical Systems and Chaos

Author: G.C. Layek

Publisher: Springer

ISBN: 8132225562

Category: Mathematics

Page: 622

View: 2266

DOWNLOAD NOW »
The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.

An Introduction to Dynamical Systems

Continuous and Discrete

Author: Rex Clark Robinson

Publisher: American Mathematical Soc.

ISBN: 0821891359

Category: Mathematics

Page: 733

View: 3029

DOWNLOAD NOW »
This book gives a mathematical treatment of the introduction to qualitative differential equations and discrete dynamical systems. The treatment includes theoretical proofs, methods of calculation, and applications. The two parts of the book, continuous time of differential equations and discrete time of dynamical systems, can be covered independently in one semester each or combined together into a year long course. The material on differential equations introduces the qualitative or geometric approach through a treatment of linear systems in any dimension. There follows chapters where equilibria are the most important feature, where scalar (energy) functions is the principal tool, where periodic orbits appear, and finally, chaotic systems of differential equations. The many different approaches are systematically introduced through examples and theorems. The material on discrete dynamical systems starts with maps of one variable and proceeds to systems in higher dimensions. The treatment starts with examples where the periodic points can be found explicitly and then introduces symbolic dynamics to analyze where they can be shown to exist but not given in explicit form. Chaotic systems are presented both mathematically and more computationally using Lyapunov exponents. With the one-dimensional maps as models, the multidimensional maps cover the same material in higher dimensions. This higher dimensional material is less computational and more conceptual and theoretical. The final chapter on fractals introduces various dimensions which is another computational tool for measuring the complexity of a system. It also treats iterated function systems which give examples of complicated sets. In the second edition of the book, much of the material has been rewritten to clarify the presentation. Also, some new material has been included in both parts of the book. This book can be used as a textbook for an advanced undergraduate course on ordinary differential equations and/or dynamical systems. Prerequisites are standard courses in calculus (single variable and multivariable), linear algebra, and introductory differential equations.

Chaos and Nonlinear Dynamics

An Introduction for Scientists and Engineers

Author: Robert C. Hilborn

Publisher: Oxford University Press on Demand

ISBN: 9780198507239

Category: Mathematics

Page: 650

View: 6011

DOWNLOAD NOW »
This is a comprehensive introduction to the exciting scientific field of nonlinear dynamics for students, scientists, and engineers, and requires only minimal prerequisites in physics and mathematics. The book treats all the important areas in the field and provides an extensive and up-to-date bibliography of applications in all fields of science, social science, economics, and even the arts.

An Introduction to Chaotic Dynamical Systems

Author: Robert L. Devaney

Publisher: Perseus Books

ISBN: N.A

Category: Science

Page: 336

View: 5976

DOWNLOAD NOW »
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book.In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets.This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry, Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas. The first two chapters introduce the reader to a broad spectrum of fundamental topics in dynamics: hyperbolicity, symbolic dynamics, structural stability, stable and unstable manifolds and bifurcation theory. Readers familiar with linear algebra and complex analysis will be led to the brink of contemporary research in the book’s concluding chapter, but for anyone with a background in calculus, Devaney provides a comprehensive exploration into the mathematics of chaos.

Invitation to Dynamical Systems

Author: Edward R. Scheinerman

Publisher: Courier Corporation

ISBN: 0486275329

Category: Mathematics

Page: 408

View: 4915

DOWNLOAD NOW »
This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.

Introduction to Discrete Dynamical Systems and Chaos

Author: Mario Martelli

Publisher: John Wiley & Sons

ISBN: 1118031121

Category: Mathematics

Page: 344

View: 1540

DOWNLOAD NOW »
A timely, accessible introduction to the mathematics of chaos. The past three decades have seen dramatic developments in the theory of dynamical systems, particularly regarding the exploration of chaotic behavior. Complex patterns of even simple processes arising in biology, chemistry, physics, engineering, economics, and a host of other disciplines have been investigated, explained, and utilized. Introduction to Discrete Dynamical Systems and Chaos makes these exciting and important ideas accessible to students and scientists by assuming, as a background, only the standard undergraduate training in calculus and linear algebra. Chaos is introduced at the outset and is then incorporated as an integral part of the theory of discrete dynamical systems in one or more dimensions. Both phase space and parameter space analysis are developed with ample exercises, more than 100 figures, and important practical examples such as the dynamics of atmospheric changes and neural networks. An appendix provides readers with clear guidelines on how to use Mathematica to explore discrete dynamical systems numerically. Selected programs can also be downloaded from a Wiley ftp site (address in preface). Another appendix lists possible projects that can be assigned for classroom investigation. Based on the author's 1993 book, but boasting at least 60% new, revised, and updated material, the present Introduction to Discrete Dynamical Systems and Chaos is a unique and extremely useful resource for all scientists interested in this active and intensely studied field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Dynamical Systems

Stability, Symbolic Dynamics, and Chaos

Author: Clark Robinson

Publisher: CRC Press

ISBN: 1482227878

Category: Mathematics

Page: 520

View: 8751

DOWNLOAD NOW »
Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student focusing on multidimensional systems of real variables The book treats the dynamics of both iteration of functions and solutions of ordinary differential equations. Many concepts are first introduced for iteration of functions where the geometry is simpler, but results are interpreted for differential equations. The dynamical systems approach of the book concentrates on properties of the whole system or subsets of the system rather than individual solutions. The more local theory discussed deals with characterizing types of solutions under various hypothesis, and later chapters address more global aspects.

An Introduction to Dynamical Systems

Author: D. K. Arrowsmith,C. M. Place

Publisher: Cambridge University Press

ISBN: 9780521316507

Category: Mathematics

Page: 423

View: 4378

DOWNLOAD NOW »
In recent years there has been an explosion of research centred on the appearance of so-called 'chaotic behaviour'. This book provides a largely self contained introduction to the mathematical structures underlying models of systems whose state changes with time, and which therefore may exhibit this sort of behaviour. The early part of this book is based on lectures given at the University of London and covers the background to dynamical systems, the fundamental properties of such systems, the local bifurcation theory of flows and diffeomorphisms, Anosov automorphism, the horseshoe diffeomorphism and the logistic map and area preserving planar maps . The authors then go on to consider current research in this field such as the perturbation of area-preserving maps of the plane and the cylinder. This book, which has a great number of worked examples and exercises, many with hints, and over 200 figures, will be a valuable first textbook to both senior undergraduates and postgraduate students in mathematics, physics, engineering, and other areas in which the notions of qualitative dynamics are employed.

Dynamical Systems and Chaos

Author: Henk Broer,Floris Takens

Publisher: Springer Science & Business Media

ISBN: 9781441968708

Category: Mathematics

Page: 313

View: 4472

DOWNLOAD NOW »
Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chapters have been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section. The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.

Chaotic Dynamics of Nonlinear Systems

Author: S. Neil Rasband

Publisher: Courier Dover Publications

ISBN: 0486795993

Category: Science

Page: 240

View: 3967

DOWNLOAD NOW »
Introduction to the concepts, applications, theory, and technique of chaos. Suitable for advanced undergraduates and graduate students and researchers. Requires familiarity with differential equations and linear vector spaces. 1990 edition.

A First Course in Discrete Dynamical Systems

Author: Richard A. Holmgren

Publisher: Springer Science & Business Media

ISBN: 1441987320

Category: Mathematics

Page: 223

View: 6338

DOWNLOAD NOW »
Given the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.

Chaotic Dynamics

An Introduction

Author: Gregory L. Baker,Jerry P. Gollub

Publisher: Cambridge University Press

ISBN: 9780521476850

Category: Mathematics

Page: 256

View: 5936

DOWNLOAD NOW »
New edition of a very successful undergraduate text on chaos.