An Introduction to Differential Geometry

Author: T. J. Willmore

Publisher: Courier Corporation

ISBN: 0486282104

Category: Mathematics

Page: 336

View: 742

DOWNLOAD NOW »
This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

Introduction to Differential Geometry for Engineers

Author: Brian F. Doolin,Clyde F. Martin

Publisher: Courier Corporation

ISBN: 0486281949

Category: Mathematics

Page: 176

View: 8541

DOWNLOAD NOW »
This outstanding guide supplies important mathematical tools for diverse engineering applications, offering engineers the basic concepts and terminology of modern global differential geometry. Suitable for independent study as well as a supplementary text for advanced undergraduate and graduate courses, this volume also constitutes a valuable reference for control, systems, aeronautical, electrical, and mechanical engineers.The treatment's ideas are applied mainly as an introduction to the Lie theory of differential equations and to examine the role of Grassmannians in control systems analysis. Additional topics include the fundamental notions of manifolds, tangent spaces, vector fields, exterior algebra, and Lie algebras. An appendix reviews concepts related to vector calculus, including open and closed sets, compactness, continuity, and derivative.

Introduction to Differential Geometry

Author: Luther Pfahler Eisenhart

Publisher: Princeton University Press

ISBN: 1400877865

Category: Mathematics

Page: 316

View: 6699

DOWNLOAD NOW »
Book 3 in the Princeton Mathematical Series. Originally published in 1950. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

An Introduction to Differential Geometry and Topology in Mathematical Physics

Author: Wang Rong,Chen Yue

Publisher: World Scientific

ISBN: 9814495808

Category: Mathematics

Page: 220

View: 4214

DOWNLOAD NOW »
This book gives an outline of the developments of differential geometry and topology in the twentieth century, especially those which will be closely related to new discoveries in theoretical physics. Contents:Differential Manifolds:Preliminary Knowledge and DefinitionsProperties and Operations of Tangent Vectors and Cotangent VectorsCurvature Tensors, Torsion Tensors, Covariant Differentials and Adjoint Exterior DifferentialsRiemannian GeometryComplex ManifoldGlobal Topological Properties:Homotopy Equivalence and Homotopy Groups of ManifoldsHomology and de Rham CohomologyFibre Bundles and Their Topological StructuresConnections and Curvatures on Fibre BundlesCharacteristic Classes of Fibre BundlesIndex Theorem and 4-Manifolds:Index Theorems for Manifolds Without BoundaryEssential Features of 4-Manifolds Readership: Mathematicians and physicists. Keywords:Homotopy Theory;Index Theorems;Riemannian Geometry;Complex Manifolds;Homology;De Rham Cohomology;Fibre Bundles;Characteristic Classes

Introduction to Differential Geometry and Riemannian Geometry

Author: Erwin Kreyszig

Publisher: University of Toronto Press

ISBN: 1487591055

Category: Education

Page: 382

View: 5518

DOWNLOAD NOW »
This book provides an introduction to the differential geometry of curves and surfaces in three-dimensional Euclidean space and to n-dimensional Riemannian geometry. Based on Kreyszig's earlier book Differential Geometry, it is presented in a simple and understandable manner with many examples illustrating the ideas, methods, and results. Among the topics covered are vector and tensor algebra, the theory of surfaces, the formulae of Weingarten and Gauss, geodesics, mappings of surfaces and their applications, and global problems. A thorough investigation of Reimannian manifolds is made, including the theory of hypersurfaces. Interesting problems are provided and complete solutions are given at the end of the book together with a list of the more important formulae. Elementary calculus is the sole prerequisite for the understanding of this detailed and complete study in mathematics.

An Introduction to Differential Geometry with Applications to Elasticity

Author: Philippe G. Ciarlet

Publisher: Springer Science & Business Media

ISBN: 1402042485

Category: Mathematics

Page: 210

View: 4860

DOWNLOAD NOW »
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].

An Introduction to Riemannian Geometry

With Applications to Mechanics and Relativity

Author: Leonor Godinho,José Natário

Publisher: Springer

ISBN: 3319086669

Category: Mathematics

Page: 467

View: 3378

DOWNLOAD NOW »
Unlike many other texts on differential geometry, this textbook also offers interesting applications to geometric mechanics and general relativity. The first part is a concise and self-contained introduction to the basics of manifolds, differential forms, metrics and curvature. The second part studies applications to mechanics and relativity including the proofs of the Hawking and Penrose singularity theorems. It can be independently used for one-semester courses in either of these subjects. The main ideas are illustrated and further developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making An Introduction to Riemannian Geometry ideal for self-study.

Introduction to Numerical Linear Algebra and Optimisation

Author: Philippe G. Ciarlet,Bernadette Miara,Jean-Marie Thomas

Publisher: Cambridge University Press

ISBN: 9780521339841

Category: Computers

Page: 436

View: 8338

DOWNLOAD NOW »
Based on courses taught to advanced undergraduate students, this book offers a broad introduction to the methods of numerical linear algebra and optimization. The prerequisites are familiarity with the basic properties of matrices, finite-dimensional vector spaces and advanced calculus, and some exposure to fundamental notions from functional analysis. The book is divided into two parts. The first part deals with numerical linear algebra (numerical analysis of matrices, direct and indirect methods for solving linear systems, calculation of eigenvalues and eigenvectors) and the second, optimizations (general algorithms, linear and nonlinear programming). Summaries of basic mathematics are provided, proof of theorems are complete yet kept as simple as possible, applications from physics and mechanics are discussed, a great many exercises are included, and there is a useful guide to further reading.

Manifolds and Differential Geometry

Author: Jeffrey Marc Lee

Publisher: American Mathematical Soc.

ISBN: 0821848151

Category: Mathematics

Page: 671

View: 5331

DOWNLOAD NOW »
Differential geometry began as the study of curves and surfaces using the methods of calculus. In time, the notions of curve and surface were generalized along with associated notions such as length, volume, and curvature. At the same time the topic has become closely allied with developments in topology. The basic object is a smooth manifold, to which some extra structure has been attached, such as a Riemannian metric, a symplectic form, a distinguished group of symmetries, or a connection on the tangent bundle. This book is a graduate-level introduction to the tools and structures of modern differential geometry. Included are the topics usually found in a course on differentiable manifolds, such as vector bundles, tensors, differential forms, de Rham cohomology, the Frobenius theorem and basic Lie group theory. The book also contains material on the general theory of connections on vector bundles and an in-depth chapter on semi-Riemannian geometry that covers basic material about Riemannian manifolds and Lorentz manifolds. An unusual feature of the book is the inclusion of an early chapter on the differential geometry of hyper-surfaces in Euclidean space. There is also a section that derives the exterior calculus version of Maxwell's equations. The first chapters of the book are suitable for a one-semester course on manifolds. There is more than enough material for a year-long course on manifolds and geometry.

Differential Geometry and Topology

With a View to Dynamical Systems

Author: Keith Burns,Marian Gidea

Publisher: CRC Press

ISBN: 9781584882534

Category: Mathematics

Page: 400

View: 1153

DOWNLOAD NOW »
Accessible, concise, and self-contained, this book offers an outstanding introduction to three related subjects: differential geometry, differential topology, and dynamical systems. Topics of special interest addressed in the book include Brouwer's fixed point theorem, Morse Theory, and the geodesic flow. Smooth manifolds, Riemannian metrics, affine connections, the curvature tensor, differential forms, and integration on manifolds provide the foundation for many applications in dynamical systems and mechanics. The authors also discuss the Gauss-Bonnet theorem and its implications in non-Euclidean geometry models. The differential topology aspect of the book centers on classical, transversality theory, Sard's theorem, intersection theory, and fixed-point theorems. The construction of the de Rham cohomology builds further arguments for the strong connection between the differential structure and the topological structure. It also furnishes some of the tools necessary for a complete understanding of the Morse theory. These discussions are followed by an introduction to the theory of hyperbolic systems, with emphasis on the quintessential role of the geodesic flow. The integration of geometric theory, topological theory, and concrete applications to dynamical systems set this book apart. With clean, clear prose and effective examples, the authors' intuitive approach creates a treatment that is comprehensible to relative beginners, yet rigorous enough for those with more background and experience in the field.

An Introduction to Differential Manifolds

Author: Jacques Lafontaine

Publisher: Springer

ISBN: 3319207350

Category: Mathematics

Page: 395

View: 1947

DOWNLOAD NOW »
This book is an introduction to differential manifolds. It gives solid preliminaries for more advanced topics: Riemannian manifolds, differential topology, Lie theory. It presupposes little background: the reader is only expected to master basic differential calculus, and a little point-set topology. The book covers the main topics of differential geometry: manifolds, tangent space, vector fields, differential forms, Lie groups, and a few more sophisticated topics such as de Rham cohomology, degree theory and the Gauss-Bonnet theorem for surfaces. Its ambition is to give solid foundations. In particular, the introduction of “abstract” notions such as manifolds or differential forms is motivated via questions and examples from mathematics or theoretical physics. More than 150 exercises, some of them easy and classical, some others more sophisticated, will help the beginner as well as the more expert reader. Solutions are provided for most of them. The book should be of interest to various readers: undergraduate and graduate students for a first contact to differential manifolds, mathematicians from other fields and physicists who wish to acquire some feeling about this beautiful theory. The original French text Introduction aux variétés différentielles has been a best-seller in its category in France for many years. Jacques Lafontaine was successively assistant Professor at Paris Diderot University and Professor at the University of Montpellier, where he is presently emeritus. His main research interests are Riemannian and pseudo-Riemannian geometry, including some aspects of mathematical relativity. Besides his personal research articles, he was involved in several textbooks and research monographs.

Applied Differential Geometry

A Modern Introduction

Author: Vladimir G. Ivancevic,Tijana T. Ivancevic

Publisher: World Scientific

ISBN: 9812706143

Category: Mathematics

Page: 1311

View: 4942

DOWNLOAD NOW »
This graduate-level monographic textbook treats applied differential geometry from a modern scientific perspective. Co-authored by the originator of the world's leading human motion simulator ? ?Human Biodynamics Engine?, a complex, 264-DOF bio-mechanical system, modeled by differential-geometric tools ? this is the first book that combines modern differential geometry with a wide spectrum of applications, from modern mechanics and physics, via nonlinear control, to biology and human sciences. The book is designed for a two-semester course, which gives mathematicians a variety of applications for their theory and physicists, as well as other scientists and engineers, a strong theory underlying their models.

Riemannian Manifolds

An Introduction to Curvature

Author: John M. Lee

Publisher: Springer Science & Business Media

ISBN: 0387227261

Category: Mathematics

Page: 226

View: 2211

DOWNLOAD NOW »
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

A Course in Differential Geometry

Author: Thierry Aubin

Publisher: American Mathematical Soc.

ISBN: 9780821872147

Category: Mathematics

Page: 184

View: 1891

DOWNLOAD NOW »
This textbook for second-year graduate students is an introduction to differential geometry with principal emphasis on Riemannian geometry. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.

Differential Geometry

Author: Erwin Kreyszig

Publisher: Courier Corporation

ISBN: 0486318621

Category: Mathematics

Page: 384

View: 702

DOWNLOAD NOW »
An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

An Introduction to Manifolds

Author: Loring W. Tu

Publisher: Springer Science & Business Media

ISBN: 1441974008

Category: Mathematics

Page: 410

View: 1085

DOWNLOAD NOW »
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.

An Introduction to Differential Geometry

Author: Krishna S. Amur,D. J. Shetty,C. S. Bagewadi

Publisher: Alpha Science International Limited

ISBN: 9781842656099

Category: Mathematics

Page: 241

View: 2117

DOWNLOAD NOW »
The concept of a differentiable manifold is introduced in a simple manner without going into its topological structure. Subsequently the reader is led to the same conceptual details as are found in other texts on the subjects. Since calculus on a differentiable manifold is done via the calculus on Rn, a preliminary chapter on the calculus on Rn is added. While introducing concepts such as tangent and cotangent bundles, tensor algebra and calculus, Riemannian geometry etc., enough care is taken to provide many details which enable the reader to grasp them easily. The material of the book has been tried in class-room successfully. Queries raised by the students have helped us to improve the presentation.