Applied Contaminant Transport Modeling

Author: Chunmiao Zheng,Gordon D. Bennett

Publisher: Wiley-Interscience

ISBN: 9780471384779

Category: Technology & Engineering

Page: 656

View: 8761

The challenges facing groundwater scientists and engineers today demand expertise in a wide variety of disciplines–geology, hydraulics, geochemistry, geophysics, and biology. As the number of the subdisciplines has increased and as each has become more complex and quantitative, the problem of integrating their concepts and contributions into a coherent overall interpretation has become progressively more difficult. To an increasing degree transport simulation has emerged as an answer to this problem, and the transport model has become a vehicle for integrating the vast amount of field data from a variety of sources and for understanding the relationship of various physical, chemical, and biological processes. Applied Contaminant Transport Modeling is the first resource designed to provide coverage of the discipline’s basic principles, including the theories behind solute transport in groundwater, common numerical techniques for solving transport equations, and step-by-step guidance on the development and use of field-scale modeling. The Second Edition incorporates recent advances in contaminant transport theory and simulation techniques, adding the following to the original text: -An expanded discussion of the role of aquifer heterogeneity in controlling solute transport -A new section on the dual-domain mass transfer approach as an alternative to the classical advection-dispersion model -Additional chemical processes and reactions in the discussion of reactive transport -A discussion of the TVD (total-variation-diminishing) approach to transport solution -An entirely new Part III containing two chapters on simulation of flow and transport under variable water density and under variable saturation, respectively, and a third chapter on the use of the simulation-optimization approach in remediation system design Applied Contaminant Transport Modeling, Second Edition remains the premier reference for practicing hydrogeologists, environmental scientists, engineers, and graduate students in the field. In 1998, in recognition of their work on the first edition, the authors were honored with the John Hem Excellence in Science and Engineering Award of the National Ground Water Association

Applied Contaminant Transport Modeling

Theory and Practice

Author: Chunmiao Zheng,Gordon D. Bennett

Publisher: Wiley

ISBN: 9780471285366

Category: Technology & Engineering

Page: 464

View: 1264

Applied Contaminant Transport Modeling Theory and Practice Chunmiao Zheng and Gordon D. Bennett The design of remedial systems for groundwater contamination requires a thorough understanding of how various interacting processes — advection, dispersion, and chemical reactions — influence the movement and fate of contaminants. Solute transport simulation provides an ideal vehicle to synthesize these controlling processes, evaluate their interactions, and test the effectiveness of remedial measures. Applied Contaminant Transport Modeling is the first complete resource designed to provide clear coverage of the basic principles of solute transport simulation — including the theory behind the most common numerical techniques for solving transport equations, and step-by-step guidance on the development and use of field-scale models. Written by two experts with extensive practical experience in the field, Applied Contaminant Transport Modeling clearly explains: Factors controlling the transport and fate of solutes in the subsurface —g including advective and dispersive transport and chemical reaction — and the equations governing these processes Development of mathematical models of solute transport regimes and representative analytical solutions to the transport equation Particle tracking as a practical tool for solving many types of field problems Development of Eulerian-Lagrangian methods for solving advection-dispersion-reaction equations Step-by-step development and application of solute transport models — emphasizing problem formulation, model setup, parameter selection, calibration, and sensitivity analysis Sources of uncertainty in transport simulation, and methods of evaluating and managing uncertainty Applied Contaminant Transport Modeling presents detailed case histories illustrating how hydrologists, geologists, chemists, and environmental engineers apply transport models in real-life situations, including landfills, hazardous waste sites, and contaminated aquifers. An optional diskette designed to accompany the text provides software to help the reader explore the concepts and techniques presented in the text and gain hands-on experience in transport simulation. Driven by growing concern over groundwater quality and the rapid dissemination of computer technology, solute transport simulation has become an essential means of evaluating and solving groundwater contamination and remediation problems. Applied Contaminant Transport Modeling provides you with the tools to master this significant field of study.

Modeling Groundwater Flow and Contaminant Transport

Author: Jacob Bear,Alexander H.-D. Cheng

Publisher: Springer Science & Business Media

ISBN: 1402066821

Category: Science

Page: 834

View: 3813

In many parts of the world, groundwater resources are under increasing threat from growing demands, wasteful use, and contamination. To face the challenge, good planning and management practices are needed. A key to the management of groundwater is the ability to model the movement of fluids and contaminants in the subsurface. The purpose of this book is to construct conceptual and mathematical models that can provide the information required for making decisions associated with the management of groundwater resources, and the remediation of contaminated aquifers. The basic approach of this book is to accurately describe the underlying physics of groundwater flow and solute transport in heterogeneous porous media, starting at the microscopic level, and to rigorously derive their mathematical representation at the macroscopic levels. The well-posed, macroscopic mathematical models are formulated for saturated, single phase flow, as well as for unsaturated and multiphase flow, and for the transport of single and multiple chemical species. Numerical models are presented and computer codes are reviewed, as tools for solving the models. The problem of seawater intrusion into coastal aquifers is examined and modeled. The issues of uncertainty in model input data and output are addressed. The book concludes with a chapter on the management of groundwater resources. Although one of the main objectives of this book is to construct mathematical models, the amount of mathematics required is kept minimal.

Modeling Chemical Transport in Soils

Natural and Applied Contaminants

Author: Hossein Ghadiri,Calvin Rose

Publisher: CRC Press

ISBN: 9780873717472

Category: Science

Page: 240

View: 4903

Modeling Chemical Transport in Soils: Natural and Applied Contaminants provides a comprehensive discussion of mathematical models used to anticipate and predict the consequences and fate of natural and applied chemicals. The book evaluates the strengths, weaknesses, and possibilities for application of numerous models used throughout the world. It examines the theoretical support and need for experimental calibration for each model. The book also reviews world literature to discuss such topics as the movement of sorbed chemicals by soil erosion, the movement of reactive and nonreactive chemicals in the subsurface and groundwater, and salt transport in the landscape. Modeling Chemical Transport in Soils: Natural and Applied Contaminants is an important volume for environmental scientists, agricultural engineers, regulatory personnel, farm managers, consultants, and the chemical industry.

Applied Flow and Solute Transport Modeling in Aquifers

Fundamental Principles and Analytical and Numerical Methods

Author: Vedat Batu

Publisher: CRC Press

ISBN: 1420037471

Category: Technology & Engineering

Page: 696

View: 6174

Over recent years, important contributions on the topic of solving various aquifer problems have been presented in numerous papers and reports. The scattered and wide-ranging nature of this information has made finding solutions and best practices difficult. Comprehensive and self-contained, Applied Flow and Solute Transport Modeling in Aquifers compiles the scattered literature on the topic into a single-source reference of the most up-to-date information in the field. Based on Dr. Batu's 20 years of practical experience tackling aquifer problems in a myriad of settings, the book addresses essentially all currently applied aquifer flow and contaminant transport solutions, combines theory with practical applications, covers both analytical and numerical solutions, and includes solutions to real world contaminant transport modeling scenarios. Batu approaches the subject from the practicing consultant's point of view and elucidates the difficulties real world professionals have faced in solving aquifer flow and contamination problems. The author simplifies the necessary theoretical background as much as possible and provides all derivational details of the theoretical background as worked examples. He uses this method to explore how the derivations were generated for those who need to know while allowing others to easily skip them and still benefit and learn from the practical applications of the mathematical approaches. Containing 51 tables and 323 figures, the book covers both the breadth and the depth of currently applied aquifer flow and contaminant transport modeling solutions.

Applied Groundwater Modeling

Simulation of Flow and Advective Transport

Author: Mary P. Anderson,William W. Woessner

Publisher: Academic Press

ISBN: 0080886949

Category: Science

Page: 381

View: 1437

Creating numerical groundwater models of field problems requires careful attention to describing the problem domain, selecting boundary conditions, assigning model parameters, and calibrating the model. This unique text describes the science and art of applying numerical models of groundwater flow and advective transport of solutes. Key Features * Explains how to formulate a conceptual model of a system and how to translate it into a numerical model * Includes the application of modeling principles with special attention to the finite difference flow codes PLASM and MODFLOW, and the finite-element code AQUIFEM-1 * Covers model calibration, verification, and validation * Discusses pathline analysis for tracking contaminants with reference to newly developed particle tracking codes * Makes extensive use of case studies and problems

Analytical Modeling of Solute Transport in Groundwater

Using Models to Understand the Effect of Natural Processes on Contaminant Fate and Transport

Author: Mark Goltz,Junqi Huang

Publisher: John Wiley & Sons

ISBN: 0470242345

Category: Science

Page: 272

View: 4724

Modeling -- Contaminant transport modeling -- Analytical solutions to 1-D equations -- Analytical solutions to 3-D equations -- Method of moments -- Application of analytical models to gain insight into transport behavior

Transport Modeling in Hydrogeochemical Systems

Author: J.David Logan

Publisher: Springer Science & Business Media

ISBN: 1475735189

Category: Science

Page: 226

View: 5228

This textbook develops the basic ideas of transport models in hydrogeology, including diffusion-dispersion processes, advection, and adsorption or reaction. The book serves as an excellent text or supplementary reading in courses in applied mathematics, contaminant hydrology, ground water modeling, or hydrogeology.

Groundwater Optimization Handbook

Flow, Contaminant Transport, and Conjunctive Management

Author: Richard C. Peralta

Publisher: CRC Press

ISBN: 1439838070

Category: Technology & Engineering

Page: 532

View: 8975

Existing and impending water shortages argue for improving water quantity and quality management. Groundwater Optimization Handbook: Flow, Contaminant Transport, and Conjunctive Management helps you formulate and solve groundwater optimization problems to ensure sustainable supplies of adequate quality and quantity. It shows you how to more effectively use simulation-optimization (S-O) modeling, an economically valuable groundwater management tool that couples simulation models with mathematical optimization techniques. Written for readers of varying familiarity with groundwater hydrology and mathematical optimization, the handbook approaches complex problems realistically. Its techniques have been applied in many legal settings, with produced strategies providing up to 57% improvement over those developed without S-O modeling. These techniques supply constructible designs, planning and management strategies, and metrics for performance-based contracts. Learn how to: Recognize opportunities for applying S-O models Lead client, agency, and consultant personnel through the strategy design and adaptation process Formulate common situations as clear deterministic/stochastic and single/multiobjective mathematical optimization problems Distinguish between problem nonlinearities resulting from physical system characteristics versus management goals Create an S-O model appropriate for your specific needs or select an existing transferrable model Develop acceptable feasible solutions and compute optimal solutions Quantify tradeoffs between multiple objectives Evaluate and adapt a selected optimal strategy, or use it as a metric for comparison Drawing on the author’s numerous real-world designs and more than 30 years of research, consulting, and teaching experience, this practical handbook supplies design procedures, detailed flowcharts, solved problems, lessons learned, and diverse applications. It guides you through the maze of multiple objectives, constraints, and uncertainty to calculate the best strategies for managing flow, contamination, and conjunctive use of groundwater and surface water. Ancillary materials are available from the Downloads tab on the book page at

Introduction to Groundwater Modeling

Finite Difference and Finite Element Methods

Author: Herbert F. Wang,Mary P. Anderson

Publisher: Academic Press

ISBN: 0080571948

Category: Technology & Engineering

Page: 237

View: 2536

The dramatic advances in the efficiency of digital computers during the past decade have provided hydrologists with a powerful tool for numerical modeling of groundwater systems. Introduction to Groundwater Modeling presents a broad, comprehensive overview of the fundamental concepts and applications of computerized groundwater modeling. The book covers both finite difference and finite element methods and includes practical sample programs that demonstrate theoretical points described in the text. Each chapter is followed by problems, notes, and references to additional information. This volume will be indispensable to students in introductory groundwater modeling courses as well as to groundwater professionals wishing to gain a complete introduction to this vital subject. Key Features * Systematic exposition of the basic ideas and results of Hilbert space theory and functional analysis * Great variety of applications that are not available in comparable books * Different approach to the Lebesgue integral, which makes the theory easier, more intuitive, and more accessible to undergraduate students

3D-Groundwater Modeling with PMWIN

A Simulation System for Modeling Groundwater Flow and Pollution

Author: Wen-Hsing Chiang,Wolfgang Kinzelbach

Publisher: Springer Science & Business Media

ISBN: 366205549X

Category: Science

Page: 346

View: 5198

This book and CD-ROM offer a complete simulation system for modeling groundwater flow and transport processes. The companion full-version software (PMWIN) comes with a professional graphical user-interface, supported models and programs and several other useful modeling tools. Tools include a Presentation Tool, a Result Extractor, a Field Interpolator, a Field Generator, a Water Budget Calculator and a Graphic Viewer. Book and CD-ROM are targeted at novice and experienced groundwater modelers.

Contaminant Hydrogeology

Third Edition

Author: C. W. Fetter,Thomas Boving,David Kreamer

Publisher: Waveland Press

ISBN: 1478636505

Category: Science

Page: 647

View: 8468

Tremendous progress has been made in the field of remediation technologies since the second edition of Contaminant Hydrogeology was published two decades ago, and its content is more important than ever. Recognizing the extensive advancement and research taking place around the world, the authors have embraced and worked from a larger global perspective. Boving and Kreamer incorporate environmental innovation in studying and treating groundwater/soil contamination and the transport of those contaminants while building on Fetter’s original foundational work. Thoroughly updated, expanded, and reorganized, the new edition presents a wealth of new material, including new discussions of emerging and potential contaminant sources and their characteristics like deep well injection, fracking fluids, and in situ leach mining. New sections cover BET and Polanyi adsorption potential theory, vapor transport theory, the introduction of the Capillary and Bond Numbers, the partitioning interwell tracer testing technique for investigating NAPL sites, aerial photographic interpretation, geophysics, immunological surveys, high resolution vertical sampling, flexible liner systems, groundwater tracers, and much more. Contaminant Hydrogeology is intended as a textbook in upper level courses in mass transport and contaminant hydrogeology, and remains a valuable resource for professionals in both the public and private sectors.

Ecology, Justice, and Christian Faith

A Critical Guide to the Literature

Author: Peter W. Bakken,Joan Gibb Engel,J. Ronald Engel

Publisher: Greenwood Publishing Group

ISBN: 9780313290732

Category: Reference

Page: 228

View: 3621

The first comprehensive and critical overview of Christian perspectives on the relationship between social justice and ecological integrity, this annotated bibliography focuses on works that include ecological issues, social-ethical values and problems, and explicitly theological or religious reflection on ecological and social ethics and their interrelations. This body of moral reflection on the relationship between ecological ethics and social and economic justice (sometimes called eco-justice) will be of interest to those involved in religious education, research, liturgical renewal, public policy recommendations, community action, lay witness, and personal life-style transformation. The work is comprised of an introductory review essay followed by over 500 complete annotations. As a contemporary subject, much has been written in the past 30 years about the Christian approaches to the relationship between ecological integrity and social justice. The literature comes from a variety of disciplines and perspectives: from biblical studies to philosophical theology and cultural criticism; and from evangelical theory to process, feminist, and creation-centered theologies. Although there have been significant movements and developments in this literature, much writing seems unaware of other or earlier discussions of the interrelationships. This volume brings all the works together.

Stochastic Dynamics. Modeling Solute Transport in Porous Media

Author: Don Kulasiri,Wynand Verwoerd

Publisher: Elsevier

ISBN: 9780080541808

Category: Science

Page: 252

View: 2117

Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas are explained in an intuitive manner wherever possible with out compromising rigor. The solute transport problem in porous media saturated with water had been used as a natural setting to discuss the approaches based on stochastic dynamics. The work is also motivated by the need to have more sophisticated mathematical and computational frameworks to model the variability one encounters in natural and industrial systems. This book presents the ideas, models and computational solutions pertaining to a single problem: stochastic flow of contaminant transport in the saturated porous media such as that we find in underground aquifers. In attempting to solve this problem using stochastic concepts, different ideas and new concepts have been explored, and mathematical and computational frameworks have been developed in the process. Some of these concepts, arguments and mathematical and computational constructs are discussed in an intuititve manner in this book.

Finite Elements in Water Resources

Proceedings of the 4th International Conference, Hannover, Germany, June 1982

Author: Klaus-Peter Holz,U. Meissner,W. Zielke,C. A. Brebbia,G. Pinder,W. Gray

Publisher: Springer Science & Business Media

ISBN: 3662023482

Category: Science

Page: 1128

View: 1165

These proceedings contain the papers presented at the Fourth International Conference on Finite Elements in Water Resources, held in June, 1982, at the University of Hannover, Federal Re public of Germany. This Conference continued the successful series of previous conferences held at Princeton University in 1976, at Imperial College in 1978, and at the University of Mississippi in 1980. Since Finite Elements have proved to be a powerful means for analysing water resource problems, the principal objective of the Conference was to provide an exchange of experiences in practical applications of the finite element method and to establish a forum for discussion regarding accuracy, economy, limitations and improvements. Related discretization methods were included within the scope of the Conference. New develop ments in numerical and computational techniques, basic mathe matical formulations, and soft- and hardware aspects were considered to be equally important topics for an exchange of ideas between both theoretically and practically oriented re searchers. The Conference Organizing Committee is very grateful to the many distinguished scientists who attended the Conference, and for their contributions towards the proceedings. This collection of papers in being made available to a wider audience of en gineers and scientists by CML Publications in Southampton, U.K.

Hydrogeology and Groundwater Modeling, Second Edition

Author: Neven Kresic

Publisher: CRC Press

ISBN: 1420004999

Category: Technology & Engineering

Page: 828

View: 4486

Coupling the basics of hygrogeology with analytical and numerical modeling methods, Hydrogeology and Groundwater Modeling, Second Edition provides detailed coverage of both theory and practice. Written by a leading hydrogeologist who has consulted for industry and environmental agencies and taught at major universities around the world, this unique book fills a gap in the groundwater hydrogeology literature. With more than 40 real-world examples, the book is a source for clear, easy-to-understand, and step-by-step quantitative groundwater evaluation and contaminant fate and transport analysis, from basic laboratory determination to complex analytical calculations and computer modeling. It provides more than 400 drawings, graphs, and photographs, and a variety of useful tables of all key groundwater parameters, as well as lucid, straightforward answers to common hydrogeological problems. Reflecting nearly ten years of new scholarship since the publication of the bestselling first edition, this second edition is wider in focus with added and updated examples, figures, and problems, yet still provides information in the author's trademark, user-friendly style. No other book offers such carefully selected examples and clear, elegantly explained solutions. The inclusion of step-by-step solutions to real problems builds a knowledge base for understanding and solving groundwater issues.

Subsurface Solute Transport Models and Case Histories

With Applications to Radionuclide Migration

Author: Vyacheslav G. Rumynin

Publisher: Springer Science & Business Media

ISBN: 9400713061

Category: Science

Page: 815

View: 6779

The book addresses the development of the basic knowledge of the subsurface solute transfer with a particular emphasis on field data collection and analysis coupled with modeling (analytical and numerical) tool application. The relevant theoretical developments are concerned mainly with the formulation and solution of deterministic mass-transport equations for a wide range of engineering issues in groundwater quality assessment and forecasting. The book gives many computational examples and case studies drawn from the conducted field investigations. The analyzed problems are as follows: investigation and prediction of groundwater contamination by industrial contaminants and solutions (radionuclides, chloride and nitrate brine) with special focus on the effect of (a) aquifer heterogeneity, anisotropy, and dual porosity, (b) density contrast existing between industrial waste and groundwater, or in density-stratified artesian and coastal groundwater systems; (c) physicochemical interactions that play a major role in retarding (e.g. adsorption) or enhancing (e.g. interactions between dissolved species and mobile colloids) contaminant transport; prediction of the effects of pumping on groundwater quality at wellfields; groundwater dating using stable and radioactive isotopes for prediction and assessment of contamination potential; field and laboratory tests’ design and analysis, and monitoring data interpretation; partitioning of surface and subsurface flows using isotope techniques. One of the most essential topics addressed in the book is the migration and fate of radionuclides. Model development is motivated by field data analysis from a number of radioactively contaminated sites in the Russian Federation: near-surface radioactive waste disposal sites and deep-well radioactive waste injection sites. They play a unique role in the advancement of knowledge of the subsurface behavior and fate of many hazardous radionuclides and can be considered as field-scale laboratories. Thus, the book, along with theoretical findings, contains field information, which will facilitate the understanding of subsurface solute transport and the development of a methodology for practical applications to groundwater hydrology.