Backward Stochastic Differential Equations

From Linear to Fully Nonlinear Theory

Author: Jianfeng Zhang

Publisher: Springer

ISBN: 1493972561

Category: Mathematics

Page: 386

View: 2069

DOWNLOAD NOW »
This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

Stochastic Partial Differential Equations

A Modeling, White Noise Functional Approach

Author: H. Holden,Bernt Oksendal,Jan Uboe,Tusheng Zhang

Publisher: Springer Science & Business Media

ISBN: 1468492152

Category: Mathematics

Page: 231

View: 2939

DOWNLOAD NOW »
This book is based on research that, to a large extent, started around 1990, when a research project on fluid flow in stochastic reservoirs was initiated by a group including some of us with the support of VISTA, a research coopera tion between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was to use stochastic partial differential equations (SPDEs) to describe the flow of fluid in a medium where some of the parameters, e.g., the permeability, were stochastic or "noisy". We soon realized that the theory of SPDEs at the time was insufficient to handle such equations. Therefore it became our aim to develop a new mathematically rigorous theory that satisfied the following conditions. 1) The theory should be physically meaningful and realistic, and the corre sponding solutions should make sense physically and should be useful in applications. 2) The theory should be general enough to handle many of the interesting SPDEs that occur in reservoir theory and related areas. 3) The theory should be strong and efficient enough to allow us to solve th,~se SPDEs explicitly, or at least provide algorithms or approximations for the solutions.

Backward Stochastic Differential Equations

Author: N El Karoui,Laurent Mazliak

Publisher: CRC Press

ISBN: 9780582307339

Category: Mathematics

Page: 232

View: 5854

DOWNLOAD NOW »
This book presents the texts of seminars presented during the years 1995 and 1996 at the Université Paris VI and is the first attempt to present a survey on this subject. Starting from the classical conditions for existence and unicity of a solution in the most simple case-which requires more than basic stochartic calculus-several refinements on the hypotheses are introduced to obtain more general results.

Stochastic Analysis and Applications 2014

In Honour of Terry Lyons

Author: Dan Crisan,Ben Hambly,Thaleia Zariphopoulou

Publisher: Springer

ISBN: 3319112929

Category: Mathematics

Page: 503

View: 5942

DOWNLOAD NOW »
Articles from many of the main contributors to recent progress in stochastic analysis are included in this volume, which provides a snapshot of the current state of the area and its ongoing developments. It constitutes the proceedings of the conference on "Stochastic Analysis and Applications" held at the University of Oxford and the Oxford-Man Institute during 23-27 September, 2013. The conference honored the 60th birthday of Professor Terry Lyons FLSW FRSE FRS, Wallis Professor of Mathematics, University of Oxford. Terry Lyons is one of the leaders in the field of stochastic analysis. His introduction of the notion of rough paths has revolutionized the field, both in theory and in practice. Stochastic Analysis is the branch of mathematics that deals with the analysis of dynamical systems affected by noise. It emerged as a core area of mathematics in the late 20th century and has subsequently developed into an important theory with a wide range of powerful and novel tools, and with impressive applications within and beyond mathematics. Many systems are profoundly affected by stochastic fluctuations and it is not surprising that the array of applications of Stochastic Analysis is vast and touches on many aspects of life. The present volume is intended for researchers and Ph.D. students in stochastic analysis and its applications, stochastic optimization and financial mathematics, as well as financial engineers and quantitative analysts.

Forward-Backward Stochastic Differential Equations and their Applications

Author: Jin Ma,Jiongmin Yong

Publisher: Springer

ISBN: 3540488316

Category: Mathematics

Page: 278

View: 5659

DOWNLOAD NOW »
This volume is a survey/monograph on the recently developed theory of forward-backward stochastic differential equations (FBSDEs). Basic techniques such as the method of optimal control, the 'Four Step Scheme', and the method of continuation are presented in full. Related topics such as backward stochastic PDEs and many applications of FBSDEs are also discussed in detail. The volume is suitable for readers with basic knowledge of stochastic differential equations, and some exposure to the stochastic control theory and PDEs. It can be used for researchers and/or senior graduate students in the areas of probability, control theory, mathematical finance, and other related fields.

Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications

BSDEs with Jumps

Author: Łukasz Delong

Publisher: Springer Science & Business Media

ISBN: 1447153316

Category: Mathematics

Page: 288

View: 2009

DOWNLOAD NOW »
Backward stochastic differential equations with jumps can be used to solve problems in both finance and insurance. Part I of this book presents the theory of BSDEs with Lipschitz generators driven by a Brownian motion and a compensated random measure, with an emphasis on those generated by step processes and Lévy processes. It discusses key results and techniques (including numerical algorithms) for BSDEs with jumps and studies filtration-consistent nonlinear expectations and g-expectations. Part I also focuses on the mathematical tools and proofs which are crucial for understanding the theory. Part II investigates actuarial and financial applications of BSDEs with jumps. It considers a general financial and insurance model and deals with pricing and hedging of insurance equity-linked claims and asset-liability management problems. It additionally investigates perfect hedging, superhedging, quadratic optimization, utility maximization, indifference pricing, ambiguity risk minimization, no-good-deal pricing and dynamic risk measures. Part III presents some other useful classes of BSDEs and their applications. This book will make BSDEs more accessible to those who are interested in applying these equations to actuarial and financial problems. It will be beneficial to students and researchers in mathematical finance, risk measures, portfolio optimization as well as actuarial practitioners.

Stochastic Simulation and Monte Carlo Methods

Mathematical Foundations of Stochastic Simulation

Author: Carl Graham,Denis Talay

Publisher: Springer Science & Business Media

ISBN: 3642393632

Category: Mathematics

Page: 260

View: 3272

DOWNLOAD NOW »
In various scientific and industrial fields, stochastic simulations are taking on a new importance. This is due to the increasing power of computers and practitioners’ aim to simulate more and more complex systems, and thus use random parameters as well as random noises to model the parametric uncertainties and the lack of knowledge on the physics of these systems. The error analysis of these computations is a highly complex mathematical undertaking. Approaching these issues, the authors present stochastic numerical methods and prove accurate convergence rate estimates in terms of their numerical parameters (number of simulations, time discretization steps). As a result, the book is a self-contained and rigorous study of the numerical methods within a theoretical framework. After briefly reviewing the basics, the authors first introduce fundamental notions in stochastic calculus and continuous-time martingale theory, then develop the analysis of pure-jump Markov processes, Poisson processes, and stochastic differential equations. In particular, they review the essential properties of Itô integrals and prove fundamental results on the probabilistic analysis of parabolic partial differential equations. These results in turn provide the basis for developing stochastic numerical methods, both from an algorithmic and theoretical point of view. The book combines advanced mathematical tools, theoretical analysis of stochastic numerical methods, and practical issues at a high level, so as to provide optimal results on the accuracy of Monte Carlo simulations of stochastic processes. It is intended for master and Ph.D. students in the field of stochastic processes and their numerical applications, as well as for physicists, biologists, economists and other professionals working with stochastic simulations, who will benefit from the ability to reliably estimate and control the accuracy of their simulations.

Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications

BSDEs with Jumps

Author: Łukasz Delong

Publisher: Springer Science & Business Media

ISBN: 1447153316

Category: Mathematics

Page: 288

View: 4099

DOWNLOAD NOW »
Backward stochastic differential equations with jumps can be used to solve problems in both finance and insurance. Part I of this book presents the theory of BSDEs with Lipschitz generators driven by a Brownian motion and a compensated random measure, with an emphasis on those generated by step processes and Lévy processes. It discusses key results and techniques (including numerical algorithms) for BSDEs with jumps and studies filtration-consistent nonlinear expectations and g-expectations. Part I also focuses on the mathematical tools and proofs which are crucial for understanding the theory. Part II investigates actuarial and financial applications of BSDEs with jumps. It considers a general financial and insurance model and deals with pricing and hedging of insurance equity-linked claims and asset-liability management problems. It additionally investigates perfect hedging, superhedging, quadratic optimization, utility maximization, indifference pricing, ambiguity risk minimization, no-good-deal pricing and dynamic risk measures. Part III presents some other useful classes of BSDEs and their applications. This book will make BSDEs more accessible to those who are interested in applying these equations to actuarial and financial problems. It will be beneficial to students and researchers in mathematical finance, risk measures, portfolio optimization as well as actuarial practitioners.

Stochastic Differential Equations and Applications

Author: X Mao

Publisher: Elsevier

ISBN: 085709940X

Category: Mathematics

Page: 440

View: 670

DOWNLOAD NOW »
This advanced undergraduate and graduate text has now been revised and updated to cover the basic principles and applications of various types of stochastic systems, with much on theory and applications not previously available in book form. The text is also useful as a reference source for pure and applied mathematicians, statisticians and probabilists, engineers in control and communications, and information scientists, physicists and economists. Has been revised and updated to cover the basic principles and applications of various types of stochastic systems Useful as a reference source for pure and applied mathematicians, statisticians and probabilists, engineers in control and communications, and information scientists, physicists and economists

Probabilistic Theory of Mean Field Games with Applications I

Mean Field FBSDEs, Control, and Games

Author: René Carmona,François Delarue

Publisher: Springer

ISBN: 3319589202

Category: Mathematics

Page: 714

View: 4992

DOWNLOAD NOW »
This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic mean field control problems. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.

Real Options, Ambiguity, Risk and Insurance

World Class University Program in Financial Engineering, Ajou University, Volume Two

Author: A. Bensoussan,S. Peng,J. Sung

Publisher: IOS Press

ISBN: 161499238X

Category: Mathematics

Page: 296

View: 9145

DOWNLOAD NOW »
Financial engineering has become the focus of widespread media attention as a result of the worldwide financial crisis of recent years. This book is the second in a series dealing with financial engineering from Ajou University in Korea. The main objective of the series is to disseminate recent developments and important issues in financial engineering to graduate students and researchers, and to provide surveys or pedagogical exposition of important published papers in a broad perspective, as well as analyses of important financial news concerning financial engineering research, practices or regulations. Real Options, Ambiguity, Risk and Insurance, comprises 12 chapters and is divided into three parts. In Part I, five chapters deal with real options analysis, which addresses the issue of investment decisions in complex, innovative or risky projects. Part II presents three chapters on ambiguity. The notion of ambiguity is one of the major breakthroughs in the expected utility theory; ambiguity arises as uncertainties cannot be precisely described in the probability space. Part III consists of four chapters devoted to risk and insurance, and covers mutual insurance for non-traded risks, downside risk management, and credit risk in fixed income markets. This volume will be useful to both graduate students and researchers in understanding relatively new areas in economics and finance, as well as challenging aspects of mathematics.

The Malliavin Calculus and Related Topics

Author: David Nualart

Publisher: Springer Science & Business Media

ISBN: 3540283293

Category: Mathematics

Page: 382

View: 2144

DOWNLOAD NOW »
The Malliavin calculus is an infinite-dimensional differential calculus on a Gaussian space, developed to provide a probabilistic proof to Hörmander's sum of squares theorem but has found a range of applications in stochastic analysis. This book presents the features of Malliavin calculus and discusses its main applications. This second edition includes recent applications in finance and a chapter devoted to the stochastic calculus with respect to the fractional Brownian motion.

Fundamentals of Stochastic Filtering

Author: Alan Bain,Dan Crisan

Publisher: Springer Science & Business Media

ISBN: 0387768963

Category: Mathematics

Page: 390

View: 8750

DOWNLOAD NOW »
This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.

Stochastic Analysis and Applications to Finance

Essays in Honour of Jia-an Yan

Author: Tusheng Zhang

Publisher: World Scientific

ISBN: 9814383589

Category: Electronic books

Page: 465

View: 7416

DOWNLOAD NOW »
This volume is a collection of solicited and refereed articles from distinguished researchers across the field of stochastic analysis and its application to finance. The articles represent new directions and newest developments in this exciting and fast growing area. The covered topics range from Markov processes, backward stochastic differential equations, stochastic partial differential equations, stochastic control, potential theory, functional inequalities, optimal stopping, portfolio selection, to risk measure and risk theory. It will be a very useful book for young researchers who want to learn about the research directions in the area, as well as experienced researchers who want to know about the latest developments in the area of stochastic analysis and mathematical finance. Sample Chapter(s). Editorial Foreword (58 KB). Chapter 1: Non-Linear Evolution Equations Driven by Rough Paths (399 KB). Contents: Non-Linear Evolution Equations Driven by Rough Paths (Thomas Cass, Zhongmin Qian and Jan Tudor); Optimal Stopping Times with Different Information Levels and with Time Uncertainty (Arijit Chakrabarty and Xin Guo); Finite Horizon Optimal Investment and Consumption with CARA Utility and Proportional Transaction Costs (Yingshan Chen, Min Dai and Kun Zhao); MUniform Integrability of Exponential Martingales and Spectral Bounds of Non-Local Feynman-Kac Semigroups (Zhen-Qing Chen); Continuous-Time Mean-Variance Portfolio Selection with Finite Transactions (Xiangyu Cui, Jianjun Gao and Duan Li); Quantifying Model Uncertainties in the Space of Probability Measures (J Duan, T Gao and G He); A PDE Approach to Multivariate Risk Theory (Robert J Elliott, Tak Kuen Siu and Hailiang Yang); Stochastic Analysis on Loop Groups (Shizan Fang); Existence and Stability of Measure Solutions for BSDE with Generators of Quadratic Growth (Alexander Fromm, Peter Imkeller and Jianing Zhang); Convex Capital Requirements for Large Portfolios (Hans FAllmer and Thomas Knispel); The Mixed Equilibrium of Insider Trading in the Market with Rational Expected Price (Fuzhou Gong and Hong Liu); Some Results on Backward Stochastic Differential Equations Driven by Fractional Brownian Motions (Yaozhong Hu, Daniel Ocone and Jian Song); Potential Theory of Subordinate Brownian Motions Revisited (Panki Kim, Renming Song and Zoran Vondraiek); Research on Social Causes of the Financial Crisis (Steven Kou); Wick Formulas and Inequalities for the Quaternion Gaussian and -Permanental Variables (Wenbo V Li and Ang Wei); Further Study on Web Markov Skeleton Processes (Yuting Liu, Zhi-Ming Ma and Chuan Zhou); MLE of Parameters in the Drifted Brownian Motion and Its Error (Lemee Nakamura and Weian Zheng); Optimal Partial Information Control of SPDEs with Delay and Time-Advanced Backward SPDEs (Bernt yksendal, Agn s Sulem and Tusheng Zhang); Simulation of Diversified Portfolios in Continuous Financial Markets (Eckhard Platen and Renata Rendek); Coupling and Applications (Feng-Yu Wang); SDEs and a Generalised Burgers Equation (Jiang-Lun Wu and Wei Yang); Mean-Variance Hedging in the Discontinuous Case (Jianming Xia). Readership: Graduates and researchers in stochatic analysis and mathematical finance.

Stochastic Calculus for Fractional Brownian Motion and Related Processes

Author: Yuliya Mishura

Publisher: Springer

ISBN: 3540758739

Category: Mathematics

Page: 398

View: 2059

DOWNLOAD NOW »
This volume examines the theory of fractional Brownian motion and other long-memory processes. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. It proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional market.

Stochastic Models with Applications to Genetics, Cancers, AIDS and Other Biomedical Systems

Author: Wai-Yuan Tan

Publisher: World Scientific

ISBN: 981448931X

Category: Mathematics

Page: 460

View: 6263

DOWNLOAD NOW »
This book presents a systematic treatment of Markov chains, diffusion processes and state space models, as well as alternative approaches to Markov chains through stochastic difference equations and stochastic differential equations. It illustrates how these processes and approaches are applied to many problems in genetics, carcinogenesis, AIDS epidemiology and other biomedical systems. One feature of the book is that it describes the basic MCMC (Markov chain and Monte Carlo) procedures and illustrates how to use the Gibbs sampling method and the multilevel Gibbs sampling method to solve many problems in genetics, carcinogenesis, AIDS and other biomedical systems. As another feature, the book develops many state space models for many genetic problems, carcinogenesis, AIDS epidemiology and HIV pathogenesis. It shows in detail how to use the multilevel Gibbs sampling method to estimate (or predict) simultaneously the state variables and the unknown parameters in cancer chemotherapy, carcinogenesis, AIDS epidemiology and HIV pathogenesis. As a matter of fact, this book is the first to develop many state space models for many genetic problems, carcinogenesis and other biomedical problems. Contents:Discrete Time Markov Chain Models in Genetics and Biomedical SystemsStationary Distributions and MCMC in Discrete Time Markov ChainsContinuous-Time Markov Chain Models in Genetics, Cancers and AIDSAbsorption Probabilities and Stationary Distributions in Continuous-Time Markov Chain ModelsDiffusion Models in Genetics, Cancer and AIDSAsymptotic Distributions, Stationary Distributions and Absorption Probabilities in Diffusion ModelsState Space Models and Some Examples from Cancer and AIDSSome General Theories of State Space Models and Applications Readership: Graduate students and researchers in probability & statistics and the life sciences. Keywords:Stochastic;Genetics;Cancers;AIDS;Biomedical SystemsReviews:“Its strengths include the large number of models described, many of which have previously been published only in research journals; its clear presentation of many detailed analyses; and good accounts of the biology behind the models.”Mathematical Reviews

Stochastic Differential Equations, Backward SDEs, Partial Differential Equations

Author: Etienne Pardoux,Aurel Rӑşcanu

Publisher: Springer

ISBN: 3319057146

Category: Mathematics

Page: 667

View: 4672

DOWNLOAD NOW »
This research monograph presents results to researchers in stochastic calculus, forward and backward stochastic differential equations, connections between diffusion processes and second order partial differential equations (PDEs), and financial mathematics. It pays special attention to the relations between SDEs/BSDEs and second order PDEs under minimal regularity assumptions, and also extends those results to equations with multivalued coefficients. The authors present in particular the theory of reflected SDEs in the above mentioned framework and include exercises at the end of each chapter. Stochastic calculus and stochastic differential equations (SDEs) were first introduced by K. Itô in the 1940s, in order to construct the path of diffusion processes (which are continuous time Markov processes with continuous trajectories taking their values in a finite dimensional vector space or manifold), which had been studied from a more analytic point of view by Kolmogorov in the 1930s. Since then, this topic has become an important subject of Mathematics and Applied Mathematics, because of its mathematical richness and its importance for applications in many areas of Physics, Biology, Economics and Finance, where random processes play an increasingly important role. One important aspect is the connection between diffusion processes and linear partial differential equations of second order, which is in particular the basis for Monte Carlo numerical methods for linear PDEs. Since the pioneering work of Peng and Pardoux in the early 1990s, a new type of SDEs called backward stochastic differential equations (BSDEs) has emerged. The two main reasons why this new class of equations is important are the connection between BSDEs and semilinear PDEs, and the fact that BSDEs constitute a natural generalization of the famous Black and Scholes model from Mathematical Finance, and thus offer a natural mathematical framework for the formulation of many new models in Finance.

Probabilistic Models for Nonlinear Partial Differential Equations

Lectures given at the 1st Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Montecatini Terme, Italy, May 22-30, 1995

Author: Carl Graham,Thomas G. Kurtz,Sylvie Meleard,Philip Protter,Mario Pulvirenti

Publisher: Springer

ISBN: 3540685138

Category: Mathematics

Page: 302

View: 9912

DOWNLOAD NOW »
The lecture courses of the CIME Summer School on Probabilistic Models for Nonlinear PDE's and their Numerical Applications (April 1995) had a three-fold emphasis: first, on the weak convergence of stochastic integrals; second, on the probabilistic interpretation and the particle approximation of equations coming from Physics (conservation laws, Boltzmann-like and Navier-Stokes equations); third, on the modelling of networks by interacting particle systems. This book, collecting the notes of these courses, will be useful to probabilists working on stochastic particle methods and on the approximation of SPDEs, in particular, to PhD students and young researchers.

Stochastic Optimal Control in Infinite Dimension

Dynamic Programming and HJB Equations

Author: Giorgio Fabbri,Fausto Gozzi,Andrzej Święch

Publisher: Springer

ISBN: 3319530674

Category: Mathematics

Page: 916

View: 7244

DOWNLOAD NOW »
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

Stochastic Theory and Control

Proceedings of a Workshop held in Lawrence, Kansas

Author: Bozenna Pasik-Duncan

Publisher: Springer

ISBN: 3540480226

Category: Mathematics

Page: 566

View: 7610

DOWNLOAD NOW »
This volume contains almost all of the papers that were presented at the Workshop on Stochastic Theory and Control that was held at the Univ- sity of Kansas, 18–20 October 2001. This three-day event gathered a group of leading scholars in the ?eld of stochastic theory and control to discuss leading-edge topics of stochastic control, which include risk sensitive control, adaptive control, mathematics of ?nance, estimation, identi?cation, optimal control, nonlinear ?ltering, stochastic di?erential equations, stochastic p- tial di?erential equations, and stochastic theory and its applications. The workshop provided an opportunity for many stochastic control researchers to network and discuss cutting-edge technologies and applications, teaching and future directions of stochastic control. Furthermore, the workshop focused on promoting control theory, in particular stochastic control, and it promoted collaborative initiatives in stochastic theory and control and stochastic c- trol education. The lecture on “Adaptation of Real-Time Seizure Detection Algorithm” was videotaped by the PBS. Participants of the workshop have been involved in contributing to the documentary being ?lmed by PBS which highlights the extraordinary work on “Math, Medicine and the Mind: Discovering Tre- ments for Epilepsy” that examines the e?orts of the multidisciplinary team on which several of the participants of the workshop have been working for many years to solve one of the world’s most dramatic neurological conditions. Invited high school teachers of Math and Science were among the part- ipants of this professional meeting.