Backward Stochastic Differential Equations

From Linear to Fully Nonlinear Theory

Author: Jianfeng Zhang

Publisher: Springer

ISBN: 1493972561

Category: Mathematics

Page: 388

View: 646

This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

Stochastic Analysis and Applications 2014

In Honour of Terry Lyons

Author: Dan Crisan,Ben Hambly,Thaleia Zariphopoulou

Publisher: Springer

ISBN: 3319112929

Category: Mathematics

Page: 503

View: 6540

Articles from many of the main contributors to recent progress in stochastic analysis are included in this volume, which provides a snapshot of the current state of the area and its ongoing developments. It constitutes the proceedings of the conference on "Stochastic Analysis and Applications" held at the University of Oxford and the Oxford-Man Institute during 23-27 September, 2013. The conference honored the 60th birthday of Professor Terry Lyons FLSW FRSE FRS, Wallis Professor of Mathematics, University of Oxford. Terry Lyons is one of the leaders in the field of stochastic analysis. His introduction of the notion of rough paths has revolutionized the field, both in theory and in practice. Stochastic Analysis is the branch of mathematics that deals with the analysis of dynamical systems affected by noise. It emerged as a core area of mathematics in the late 20th century and has subsequently developed into an important theory with a wide range of powerful and novel tools, and with impressive applications within and beyond mathematics. Many systems are profoundly affected by stochastic fluctuations and it is not surprising that the array of applications of Stochastic Analysis is vast and touches on many aspects of life. The present volume is intended for researchers and Ph.D. students in stochastic analysis and its applications, stochastic optimization and financial mathematics, as well as financial engineers and quantitative analysts.

Probabilistic Theory of Mean Field Games with Applications I

Mean Field FBSDEs, Control, and Games

Author: René Carmona,François Delarue

Publisher: Springer

ISBN: 3319589202

Category: Mathematics

Page: 714

View: 5642

This two-volume book offers a comprehensive treatment of the probabilistic approach to mean field game models and their applications. The book is self-contained in nature and includes original material and applications with explicit examples throughout, including numerical solutions. Volume I of the book is entirely devoted to the theory of mean field games without a common noise. The first half of the volume provides a self-contained introduction to mean field games, starting from concrete illustrations of games with a finite number of players, and ending with ready-for-use solvability results. Readers are provided with the tools necessary for the solution of forward-backward stochastic differential equations of the McKean-Vlasov type at the core of the probabilistic approach. The second half of this volume focuses on the main principles of analysis on the Wasserstein space. It includes Lions' approach to the Wasserstein differential calculus, and the applications of its results to the analysis of stochastic mean field control problems. Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different access points for different readers and building up the level of technical detail. The accessible approach and overview will allow interested researchers in the applied sciences to obtain a clear overview of the state of the art in mean field games.

Real Options, Ambiguity, Risk and Insurance

World Class University Program in Financial Engineering, Ajou University, Volume Two

Author: A. Bensoussan,S. Peng,J. Sung

Publisher: IOS Press

ISBN: 161499238X

Category: Mathematics

Page: 296

View: 465

Financial engineering has become the focus of widespread media attention as a result of the worldwide financial crisis of recent years. This book is the second in a series dealing with financial engineering from Ajou University in Korea. The main objective of the series is to disseminate recent developments and important issues in financial engineering to graduate students and researchers, and to provide surveys or pedagogical exposition of important published papers in a broad perspective, as well as analyses of important financial news concerning financial engineering research, practices or regulations. Real Options, Ambiguity, Risk and Insurance, comprises 12 chapters and is divided into three parts. In Part I, five chapters deal with real options analysis, which addresses the issue of investment decisions in complex, innovative or risky projects. Part II presents three chapters on ambiguity. The notion of ambiguity is one of the major breakthroughs in the expected utility theory; ambiguity arises as uncertainties cannot be precisely described in the probability space. Part III consists of four chapters devoted to risk and insurance, and covers mutual insurance for non-traded risks, downside risk management, and credit risk in fixed income markets. This volume will be useful to both graduate students and researchers in understanding relatively new areas in economics and finance, as well as challenging aspects of mathematics.

Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications

BSDEs with Jumps

Author: Łukasz Delong

Publisher: Springer Science & Business Media

ISBN: 1447153316

Category: Mathematics

Page: 288

View: 6391

Backward stochastic differential equations with jumps can be used to solve problems in both finance and insurance. Part I of this book presents the theory of BSDEs with Lipschitz generators driven by a Brownian motion and a compensated random measure, with an emphasis on those generated by step processes and Lévy processes. It discusses key results and techniques (including numerical algorithms) for BSDEs with jumps and studies filtration-consistent nonlinear expectations and g-expectations. Part I also focuses on the mathematical tools and proofs which are crucial for understanding the theory. Part II investigates actuarial and financial applications of BSDEs with jumps. It considers a general financial and insurance model and deals with pricing and hedging of insurance equity-linked claims and asset-liability management problems. It additionally investigates perfect hedging, superhedging, quadratic optimization, utility maximization, indifference pricing, ambiguity risk minimization, no-good-deal pricing and dynamic risk measures. Part III presents some other useful classes of BSDEs and their applications. This book will make BSDEs more accessible to those who are interested in applying these equations to actuarial and financial problems. It will be beneficial to students and researchers in mathematical finance, risk measures, portfolio optimization as well as actuarial practitioners.

Wahrscheinlichkeitstheorie und Stochastische Prozesse

Author: Michael Mürmann

Publisher: Springer-Verlag

ISBN: 364238160X

Category: Mathematics

Page: 428

View: 1611

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Wahrscheinlichkeitsrechnung und Statistik

Author: Robert Hafner

Publisher: Springer-Verlag

ISBN: 3709169445

Category: Mathematics

Page: 512

View: 9234

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Sharp Real-Part Theorems

A Unified Approach

Author: Gershon Kresin,Vladimir Maz'ya

Publisher: Springer

ISBN: 3540695745

Category: Mathematics

Page: 145

View: 5628

This volume contains a coherent point of view on various sharp pointwise inequalities for analytic functions in a disk in terms of the real part of the function on the boundary circle or in the disk itself. Inequalities of this type are frequently used in the theory of entire functions and in the analytic number theory.

Stochastic Optimal Control in Infinite Dimension

Dynamic Programming and HJB Equations

Author: Giorgio Fabbri,Fausto Gozzi,Andrzej Święch

Publisher: Springer

ISBN: 3319530674

Category: Mathematics

Page: 916

View: 9329

Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

Encyclopedia of mathematical physics

Author: Sheung Tsun Tsou

Publisher: Academic Pr

ISBN: 9780125126601

Category: Science

Page: 3500

View: 5115

The Encyclopedia of Mathematical Physics provides a complete resource for researchers, students and lecturers with an interest in mathematical physics. It enables readers to access basic information on topics peripheral to their own areas, to provide a repository of the core information in the area that can be used to refresh the researcher's own memory banks, and aid teachers in directing students to entries relevant to their course-work. The Encyclopedia does contain information that has been distilled, organised and presented as a complete reference tool to the user and a landmark to the body of knowledge that has accumulated in this domain. It also is a stimulus for new researchers working in mathematical physics or in areas using the methods originated from work in mathematical physics by providing them with focused high quality background information. * First comprehensive interdisciplinary coverage * Mathematical Physics explained to stimulate new developments and foster new applications of its methods to other fields * Written by an international group of experts * Contains several undergraduate-level introductory articles to facilitate acquisition of new expertise * Thematic index and extensive cross-referencing to provide easy access and quick search functionality * Also available online with active linking.

Selected Preserver Problems on Algebraic Structures of Linear Operators and on Function Spaces

Author: L. Molnár

Publisher: Springer

ISBN: 9783540399445

Category: Mathematics

Page: 236

View: 8368

The territory of preserver problems has grown continuously within linear analysis. This book presents a cross-section of the modern theory of preservers on infinite dimensional spaces (operator spaces and function spaces) through the author's corresponding results. Special emphasis is placed on preserver problems concerning some structures of Hilbert space operators which appear in quantum mechanics. In addition, local automorphisms and local isometries of operator algebras and function algebras are discussed in detail.

Beyond Partial Differential Equations

On Linear and Quasi-Linear Abstract Hyperbolic Evolution Equations

Author: Horst Reinhard Beyer

Publisher: Springer Verlag

ISBN: 9783540711285

Category: Mathematics

Page: 283

View: 7701

The present volume is self-contained and introduces to the treatment of linear and nonlinear (quasi-linear) abstract evolution equations by methods from the theory of strongly continuous semigroups. The theoretical part is accessible to graduate students with basic knowledge in functional analysis. Only some examples require more specialized knowledge from the spectral theory of linear, self-adjoint operators in Hilbert spaces. Particular stress is on equations of the hyperbolic type since considerably less often treated in the literature. Also, evolution equations from fundamental physics need to be compatible with the theory of special relativity and therefore are of hyperbolic type. Throughout, detailed applications are given to hyperbolic partial differential equations occurring in problems of current theoretical physics, in particular to Hermitian hyperbolic systems. This volume is thus also of interest to readers from theoretical physics.

Fluctuation theory for Lévy processes

Ecole d'Eté de Probabilités de Saint-Flour XXXV-2005

Author: Ronald A. Doney

Publisher: Springer Verlag

ISBN: 9783540485100

Category: Mathematics

Page: 147

View: 4071

Lévy processes, i.e. processes in continuous time with stationary and independent increments, are named after Paul Lévy, who made the connection with infinitely divisible distributions and described their structure. They form a flexible class of models, which have been applied to the study of storage processes, insurance risk, queues, turbulence, laser cooling, ... and of course finance, where the feature that they include examples having "heavy tails" is particularly important. Their sample path behaviour poses a variety of difficult and fascinating problems. Such problems, and also some related distributional problems, are addressed in detail in these notes that reflect the content of the course given by R. Doney in St. Flour in 2005.

Punctured torus groups and 2-bridge knot groups (I)

Author: Hirotaka Akiyoshi,Makoto Sakuma,Masaaki Wada

Publisher: Springer Verlag

ISBN: 9783540718062

Category: Mathematics

Page: 252

View: 3606

This monograph is Part 1 of a book project intended to give a full account of Jorgensen's theory of punctured torus Kleinian groups and its generalization, with application to knot theory.Although Jorgensen's original work was not published in complete form, it has been a source of inspiration. In particular, it has motivated and guided Thurston's revolutionary study of low-dimensional geometric topology.In this monograph, we give an elementary and self-contained description of Jorgensen's theory with a complete proof. Through various informative illustrations, readers are naturally led to an intuitive, synthetic grasp of the theory, which clarifies how a very simple fuchsian group evolves into complicated Kleinian groups.

Construction of Global Lyapunov Functions Using Radial Basis Functions

Author: Peter Giesl

Publisher: Springer

ISBN: 9783540699071

Category: Mathematics

Page: 171

View: 2450

The basin of attraction of an equilibrium of an ordinary differential equation can be determined using a Lyapunov function. A new method to construct such a Lyapunov function using radial basis functions is presented in this volume intended for researchers and advanced students from both dynamical systems and radial basis functions. Besides an introduction to both areas and a detailed description of the method, it contains error estimates and many examples.