Bayesian Reasoning and Machine Learning

Author: David Barber

Publisher: Cambridge University Press

ISBN: 0521518148

Category: Computers

Page: 697

View: 9752

DOWNLOAD NOW »
A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 4957

DOWNLOAD NOW »
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Maschinelles Lernen

Author: Ethem Alpaydin

Publisher: De Gruyter Oldenbourg

ISBN: 9783486581140

Category: Machine learning

Page: 440

View: 8251

DOWNLOAD NOW »
Maschinelles Lernen heißt, Computer so zu programmieren, dass ein bestimmtes Leistungskriterium anhand von Beispieldaten und Erfahrungswerten aus der Vergangenheit optimiert wird. Das vorliegende Buch diskutiert diverse Methoden, die ihre Grundlagen in verschiedenen Themenfeldern haben: Statistik, Mustererkennung, neuronale Netze, Künstliche Intelligenz, Signalverarbeitung, Steuerung und Data Mining. In der Vergangenheit verfolgten Forscher verschiedene Wege mit unterschiedlichen Schwerpunkten. Das Anliegen dieses Buches ist es, all diese unterschiedlichen Ansätze zu kombinieren, um eine allumfassende Behandlung der Probleme und ihrer vorgeschlagenen Lösungen zu geben.

Data mining

praktische Werkzeuge und Techniken für das maschinelle Lernen

Author: Ian H. Witten,Eibe Frank

Publisher: N.A

ISBN: 9783446215337

Category:

Page: 386

View: 8568

DOWNLOAD NOW »

Machine Learning

A Bayesian and Optimization Perspective

Author: Sergios Theodoridis

Publisher: Academic Press

ISBN: 0128017228

Category: Computers

Page: 1062

View: 6422

DOWNLOAD NOW »
This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods. The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling. Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied. MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Data Science für Dummies

Author: Lillian Pierson

Publisher: John Wiley & Sons

ISBN: 352780675X

Category: Mathematics

Page: 382

View: 1577

DOWNLOAD NOW »
Daten, Daten, Daten? Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensätze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafür notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So können Sie die Erkenntnisse dieses Buches auf Ihre Daten übertragen und aus deren Analyse unmittelbare Schlüsse und Konsequenzen ziehen.

Die technologische Singularität

Author: Murray Shanahan

Publisher: N.A

ISBN: 9783957574404

Category: Science

Page: 270

View: 8243

DOWNLOAD NOW »
›Technologische Singularität‹ bezeichnet den Zeitpunkt, an dem von künstlicher Intelligenz gesteuerte Maschinen sich fortlaufend selbst so zu verbessern imstande sind, dass sie sich der Beherrschung durch Menschenhand entziehen. Der Robotikspezialist Murray Shanahan beschreibt die unterschiedlichen derzeit weltweit vorangetriebenen technologischen Entwicklungen, die zu einem solchen Ereignis führen können. Er führt auf verständliche Weise in die komplexen Forschungen ein, die unsere nächste Zukunft verändern werden. Aus der Perspektive eines Praktikers beschäftigt er sich mit der Frage, ob künstliche Intelligenz über Bewusstsein verfügen kann, und entwickelt moralische Ansätze zu einem verantwortlichen Umgang mit dieser zumeist als Katastrophenszenario gezeichneten Zukunftsfantasie.

Der Zahlensinn oder Warum wir rechnen können

Author: Stanislas Dehaene

Publisher: Springer-Verlag

ISBN: 3034878257

Category: Science

Page: 311

View: 799

DOWNLOAD NOW »
Wir sind umgeben von Zahlen. Ob auf Kreditkarten gestanzt oder auf Münzen geprägt, ob auf Schecks gedruckt oder in den Spalten computerisierter Tabellen aufgelistet, überall beherrschen Zahlen unser Leben. Sie sind auch der Kern unserer Technologie. Ohne Zahlen könnten wir weder Raketen starten, die das Sonnensystem erkunden, noch Brücken bauen, Güter austauschen oder Rech nungen bezahlen. In gewissem Sinn sind Zahlen also kulturelle Erfindungen, die sich ihrer Bedeutung nach nur mit der Landwirtschaft oder mit dem Rad vergleichen lassen. Aber sie könnten sogar noch tiefere Wurzeln haben. Tausende von Jahren vor Christus benutzten babylonische Wissenschaftler Zahlzeichen, um erstaun lich genaueastronomische Tabellen zu berechnen. Zehntausende von Jahren zuvor hatten Menschen der Steinzeit die ersten geschriebenen Zahlenreihen geschaffen, indem sie Knochen einkerbten oder Punkte auf Höhlenwände malten. Und, wie ich später überzeugend darzustellen hoffe, schon vor weiteren Millionen von Jahren, lange bevor es Menschen gab, nahmen Tiere aller Arten Zahlen zur Kenntnis und stellten mit ihnen einfache Kopfrechnungen an. Sind Zahlen also fast so alt wie das Leben selbst? Sind sie in der Struktur unseres Gehirns verankert? Besitzen wir einen Zahlensinn, eine spezielle Intuition, die uns hilft, Zahlen und Mathematik mit Sinn zu erfüllen? Ich wurde vor fünfzehn Jahren, während meiner Ausbildung zum Mathema tiker, fasziniert von den abstrakten Objekten, mit denen ich umzugehen lernte, vor allem von den einfachsten von ihnen- den Zahlen.

Homo sapiens.

Leben im 21. Jahrhundert. Was bleibt vom Menschen?

Author: Ray Kurzweil

Publisher: N.A

ISBN: 9783548750262

Category:

Page: 509

View: 4440

DOWNLOAD NOW »

Menschheit 2.0

Die Singularität naht

Author: Ray Kurzweil

Publisher: Lola Books

ISBN: 3944203135

Category: Technology & Engineering

Page: 672

View: 433

DOWNLOAD NOW »
Das Jahr 2045 markiert einen historischen Meilenstein: Es ist das Jahr, in dem der Mensch seine biologischen Begrenzungen mithilfe der Technik überwinden wird. Diese als technologische Singularität bekannt gewordene Revolution wird die Menschheit für immer verändern. Googles Chefingenieur Ray Kurzweil, dessen wahnwitzigen Visionen in den vergangenen Jahrzehnten immer wieder genau ins Schwarze trafen, zeichnet in diesem Klassiker des Transhumanismus mit beispielloser Detailwut eine bunt schillernde Momentaufnahme der technischen Evolution und legt dar, weshalb diese so bald kein Ende finden, sondern im Gegenteil immer weiter an Dynamik gewinnen wird. Daraus ergibt sich eine ebenso faszinierende wie schockierende Vision für die Zukunft der Menschheit.

Fundamentals of Machine Learning for Predictive Data Analytics

Algorithms, Worked Examples, and Case Studies

Author: John D. Kelleher,Brian Mac Namee,Aoife D'Arcy

Publisher: MIT Press

ISBN: 0262029448

Category: Computers

Page: 624

View: 5363

DOWNLOAD NOW »
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Vorsokratiker

Author: Christof Rapp

Publisher: C.H.Beck

ISBN: 9783406547614

Category: Pre-Socratic philosophers

Page: 262

View: 8092

DOWNLOAD NOW »

Wahrscheinlichkeitsrechnung (Ars Conjectandi)

Author: Jakob Bernoulli

Publisher: Wentworth Press

ISBN: 9780270072112

Category:

Page: 170

View: 6526

DOWNLOAD NOW »
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Das Geheimnis des menschlichen Denkens

Einblicke in das Reverse Engineering des Gehirns

Author: Ray Kurzweil

Publisher: Lola Books

ISBN: 394420316X

Category: Science

Page: 352

View: 5004

DOWNLOAD NOW »
Der Wettlauf um das Gehirn hat begonnen. Sowohl die EU als auch die USA haben gewaltige Forschungsprojekte ins Leben gerufen um das Geheimnis des menschlichen Denkens zu entschlüsseln. 2023 soll es dann soweit sein: Das menschliche Gehirn kann vollständig simuliert werden. In "Das Geheimnis des menschlichen Denkens" gewährt Googles Chefingenieur Ray Kurzweil einen spannenden Einblick in das Reverse Engineering des Gehirns. Er legt dar, wie mithilfe der Mustererkennungstheorie des Geistes der ungeheuren Komplexität des Gehirns beizukommen ist und wirft einen ebenso präzisen wie überraschenden Blick auf die am Horizont sich bereits abzeichnende Zukunft. Ist das menschliche Gehirn erst einmal simuliert, wird künstliche Intelligenz die Fähigkeiten des Menschen schon bald übertreffen. Ein Ereignis, das Kurzweil aufgrund der bereits in "Menschheit 2.0" entworfenen exponentiellen Wachstumskurve der Informationstechnologien bereits für das Jahr 2029 prognostiziert. Aber was dann? Kurzweil ist zuversichtlich, dass die Vorteile künstlicher Intelligenz mögliche Bedrohungsszenarien überwiegen und sie uns entscheidend dabei hilft, uns weiterzuentwickeln und die Herausforderungen der Zukunft zu meistern.

Programmieren lernen mit Python

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868999477

Category: Computers

Page: 312

View: 6151

DOWNLOAD NOW »
Python ist eine moderne, interpretierte, interaktive und objektorientierte Skriptsprache, vielseitig einsetzbar und sehr beliebt. Mit mathematischen Vorkenntnissen ist Python leicht erlernbar und daher die ideale Sprache für den Einstieg in die Welt des Programmierens. Das Buch führt Sie Schritt für Schritt durch die Sprache, beginnend mit grundlegenden Programmierkonzepten, über Funktionen, Syntax und Semantik, Rekursion und Datenstrukturen bis hin zum objektorientierten Design. Jenseits reiner Theorie: Jedes Kapitel enthält passende Übungen und Fallstudien, kurze Verständnistests und kleinere Projekte, an denen Sie die neu erlernten Programmierkonzepte gleich ausprobieren und festigen können. Auf diese Weise können Sie das Gelernte direkt anwenden und die jeweiligen Programmierkonzepte nachvollziehen. Lernen Sie Debugging-Techniken kennen: Am Ende jedes Kapitels finden Sie einen Abschnitt zum Thema Debugging, der Techniken zum Aufspüren und Vermeiden von Bugs sowie Warnungen vor entsprechenden Stolpersteinen in Python enthält. Starten Sie durch: Beginnen Sie mit den Grundlagen der Programmierung und den verschiedenen Programmierkonzepten, und lernen Sie, wie ein Informatiker zu programmieren.

Routineaufgaben mit Python automatisieren

Praktische Programmierlösungen für Einsteiger

Author: Al Sweigart

Publisher: dpunkt.verlag

ISBN: 3864919932

Category: Computers

Page: 576

View: 7699

DOWNLOAD NOW »
Wenn Sie jemals Stunden damit verbracht haben, Dateien umzubenennen oder Hunderte von Tabelleneinträgen zu aktualisieren, dann wissen Sie, wie stumpfsinnig manche Tätigkeiten sein können. Wie wäre es, den Computer dazu zu bringen, diese Arbeiten zu übernehmen? In diesem Buch lernen Sie, wie Sie mit Python Aufgaben in Sekundenschnelle erledigen können, die sonst viel Zeit in Anspruch nehmen würden. Programmiererfahrung brauchen Sie dazu nicht: Wenn Sie einmal die Grundlagen gemeistert haben, werden Sie Python-Programme schreiben, die automatisch alle möglichen praktischen Aufgaben für Sie abarbeiten: • eine oder eine Vielzahl von Dateien nach Texten durchsuchen • Dateien und Ordner erzeugen, aktualisieren, verschieben und umbenennen • das Web durchsuchen und Inhalte herunterladen • Excel-Dateien aktualisieren und formatieren • PDF-Dateien teilen, zusammenfügen, mit Wasserzeichen versehen und verschlüsseln • Erinnerungsmails und Textnachrichten verschicken • Online-Formulare ausfüllen Schritt-für-Schritt-Anleitungen führen Sie durch jedes Programm und Übungsaufgaben am Ende jedes Kapitels fordern Sie dazu auf, die Programme zu verbessern und Ihre Fähigkeiten auf ähnliche Problemstellungen zu richten. Verschwenden Sie nicht Ihre Zeit mit Aufgaben, die auch ein gut dressierter Affe erledigen könnte. Bringen Sie Ihren Computer dazu, die langweilige Arbeit zu machen!

Machine Learning: ECML'97

9th European Conference on Machine Learning, Prague, Czech Republic, April 23 - 25, 1997, Proceedings

Author: Maarten van Someren

Publisher: Springer Science & Business Media

ISBN: 9783540628583

Category: Computers

Page: 360

View: 1160

DOWNLOAD NOW »
This book constitutes the refereed proceedings of the Ninth European Conference on Machine Learning, ECML-97, held in Prague, Czech Republic, in April 1997. This volume presents 26 revised full papers selected from a total of 73 submissions. Also included are an abstract and two papers corresponding to the invited talks as well as descriptions from four satellite workshops. The volume covers the whole spectrum of current machine learning issues.