Beginning Topology

Author: Sue E. Goodman

Publisher: American Mathematical Soc.

ISBN: 0821847961

Category: Mathematics

Page: 236

View: 7164

DOWNLOAD NOW »
Beginning Topology is designed to give undergraduate students a broad notion of the scope of topology in areas of point-set, geometric, combinatorial, differential, and algebraic topology, including an introduction to knot theory. A primary goal is to expose students to some recent research and to get them actively involved in learning. Exercises and open-ended projects are placed throughout the text, making it adaptable to seminar-style classes. The book starts with a chapter introducing the basic concepts of point-set topology, with examples chosen to captivate students' imaginations while illustrating the need for rigor. Most of the material in this and the next two chapters is essential for the remainder of the book. One can then choose from chapters on map coloring, vector fields on surfaces, the fundamental group, and knot theory. A solid foundation in calculus is necessary, with some differential equations and basic group theory helpful in a couple of chapters. Topics are chosen to appeal to a wide variety of students: primarily upper-level math majors, but also a few freshmen and sophomores as well as graduate students from physics, economics, and computer science. All students will benefit from seeing the interaction of topology with other fields of mathematics and science; some will be motivated to continue with a more in-depth, rigorous study of topology.

Advanced Calculus

Author: Patrick Fitzpatrick

Publisher: American Mathematical Soc.

ISBN: 9780821847916

Category: Mathematics

Page: 590

View: 4745

DOWNLOAD NOW »
Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables. Special attention has been paid to the motivation for proofs. Selected topics, such as the Picard Existence Theorem for differential equations, have been included in such a way that selections may be made while preserving a fluid presentation of the essential material. Supplemented with numerous exercises, Advanced Calculus is a perfect book for undergraduate students of analysis.

Foundations of Analysis

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

ISBN: 0821889842

Category: Mathematics

Page: 398

View: 1224

DOWNLOAD NOW »
Foundations of Analysis is an excellent new text for undergraduate students in real analysis. More than other texts in the subject, it is clear, concise and to the point, without extra bells and whistles. It also has many good exercises that help illustrate the material. My students were very satisfied with it. --Nat Smale, University of Utah I have taught our Foundations of Analysis course (based on Joe Taylor.s book) several times recently, and have enjoyed doing so. The book is well-written, clear, and concise, and supplies the students with very good introductory discussions of the various topics, correct and well-thought-out proofs, and appropriate, helpful examples. The end-of-chapter problems supplement the body of the text very well (and range nicely from simple exercises to really challenging problems). --Robert Brooks, University of Utah An excellent text for students whose future will include contact with mathematical analysis, whatever their discipline might be. It is content-comprehensive and pedagogically sound. There are exercises adequate to guarantee thorough grounding in the basic facts, and problems to initiate thought and gain experience in proofs and counterexamples. Moreover, the text takes the reader near enough to the frontier of analysis at the calculus level that the teacher can challenge the students with questions that are at the ragged edge of research for undergraduate students. I like it a lot. --Don Tucker, University of Utah My students appreciate the concise style of the book and the many helpful examples. --W.M. McGovern, University of Washington Analysis plays a crucial role in the undergraduate curriculum. Building upon the familiar notions of calculus, analysis introduces the depth and rigor characteristic of higher mathematics courses. Foundations of Analysis has two main goals. The first is to develop in students the mathematical maturity and sophistication they will need as they move through the upper division curriculum. The second is to present a rigorous development of both single and several variable calculus, beginning with a study of the properties of the real number system. The presentation is both thorough and concise, with simple, straightforward explanations. The exercises differ widely in level of abstraction and level of difficulty. They vary from the simple to the quite difficult and from the computational to the theoretical. Each section contains a number of examples designed to illustrate the material in the section and to teach students how to approach the exercises for that section. The list of topics covered is rather standard, although the treatment of some of them is not. The several variable material makes full use of the power of linear algebra, particularly in the treatment of the differential of a function as the best affine approximation to the function at a given point. The text includes a review of several linear algebra topics in preparation for this material. In the final chapter, vector calculus is presented from a modern point of view, using differential forms to give a unified treatment of the major theorems relating derivatives and integrals: Green's, Gauss's, and Stokes's Theorems. At appropriate points, abstract metric spaces, topological spaces, inner product spaces, and normed linear spaces are introduced, but only as asides. That is, the course is grounded in the concrete world of Euclidean space, but the students are made aware that there are more exotic worlds in which the concepts they are learning may be studied.

Abstract Algebra

Author: Ronald Solomon

Publisher: American Mathematical Soc.

ISBN: 9780821847954

Category: Mathematics

Page: 227

View: 6620

DOWNLOAD NOW »
This undergraduate text takes a novel approach to the standard introductory material on groups, rings, and fields. At the heart of the text is a semi-historical journey through the early decades of the subject as it emerged in the revolutionary work of Euler, Lagrange, Gauss, and Galois. Avoiding excessive abstraction whenever possible, the text focuses on the central problem of studying the solutions of polynomial equations. Highlights include a proof of the Fundamental Theorem of Algebra, essentially due to Euler, and a proof of the constructability of the regular 17-gon, in the manner of Gauss. Another novel feature is the introduction of groups through a meditation on the meaning of congruence in the work of Euclid. Everywhere in the text, the goal is to make clear the links connecting abstract algebra to Euclidean geometry, high school algebra, and trigonometry, in the hope that students pursuing a career as secondary mathematics educators will carry away a deeper and richer understanding of the high school mathematics curriculum. Another goal is to encourage students, insofar as possible in a textbook format, to build the course for themselves, with exercises integrally embedded in the text of each chapter.

Axiomatic Geometry

Author: John M. Lee

Publisher: American Mathematical Soc.

ISBN: 0821884786

Category: Mathematics

Page: 469

View: 7230

DOWNLOAD NOW »
The story of geometry is the story of mathematics itself: Euclidean geometry was the first branch of mathematics to be systematically studied and placed on a firm logical foundation, and it is the prototype for the axiomatic method that lies at the foundation of modern mathematics. It has been taught to students for more than two millennia as a mode of logical thought. This book tells the story of how the axiomatic method has progressed from Euclid's time to ours, as a way of understanding what mathematics is, how we read and evaluate mathematical arguments, and why mathematics has achieved the level of certainty it has. It is designed primarily for advanced undergraduates who plan to teach secondary school geometry, but it should also provide something of interest to anyone who wishes to understand geometry and the axiomatic method better. It introduces a modern, rigorous, axiomatic treatment of Euclidean and (to a lesser extent) non-Euclidean geometries, offering students ample opportunities to practice reading and writing proofs while at the same time developing most of the concrete geometric relationships that secondary teachers will need to know in the classroom. -- P. [4] of cover.

Mathematical Analysis and Its Inherent Nature

Author: Hossein Hosseini Giv

Publisher: American Mathematical Soc.

ISBN: 1470428075

Category: Calculus

Page: 348

View: 6148

DOWNLOAD NOW »
Mathematical analysis is often referred to as generalized calculus. But it is much more than that. This book has been written in the belief that emphasizing the inherent nature of a mathematical discipline helps students to understand it better. With this in mind, and focusing on the essence of analysis, the text is divided into two parts based on the way they are related to calculus: completion and abstraction. The first part describes those aspects of analysis which complete a corresponding area of calculus theoretically, while the second part concentrates on the way analysis generalizes some aspects of calculus to a more general framework. Presenting the contents in this way has an important advantage: students first learn the most important aspects of analysis on the classical space R and fill in the gaps of their calculus-based knowledge. Then they proceed to a step-by-step development of an abstract theory, namely, the theory of metric spaces which studies such crucial notions as limit, continuity, and convergence in a wider context. The readers are assumed to have passed courses in one- and several-variable calculus and an elementary course on the foundations of mathematics. A large variety of exercises and the inclusion of informal interpretations of many results and examples will greatly facilitate the reader's study of the subject.

Measure, Topology, and Fractal Geometry

Author: Gerald Edgar

Publisher: Springer Science & Business Media

ISBN: 0387747494

Category: Mathematics

Page: 272

View: 8914

DOWNLOAD NOW »
Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.

An Introduction to Complex Analysis and Geometry

Author: John P. D'Angelo

Publisher: American Mathematical Soc.

ISBN: 0821852744

Category: Mathematics

Page: 163

View: 5782

DOWNLOAD NOW »
An Introduction to Complex Analysis and Geometry provides the reader with a deep appreciation of complex analysis and how this subject fits into mathematics. The book developed from courses given in the Campus Honors Program at the University of Illinois Urbana-Champaign. These courses aimed to share with students the way many mathematics and physics problems magically simplify when viewed from the perspective of complex analysis. The book begins at an elementary level but also contains advanced material. The first four chapters provide an introduction to complex analysis with many elementary and unusual applications. Chapters 5 through 7 develop the Cauchy theory and include some striking applications to calculus. Chapter 8 glimpses several appealing topics, simultaneously unifying the book and opening the door to further study. The 280 exercises range from simple computations to difficult problems. Their variety makes the book especially attractive. A reader of the first four chapters will be able to apply complex numbers in many elementary contexts. A reader of the full book will know basic one complex variable theory and will have seen it integrated into mathematics as a whole. Research mathematicians will discover several novel perspectives.

Topology of Surfaces

Author: L.Christine Kinsey

Publisher: Springer Science & Business Media

ISBN: 1461208998

Category: Mathematics

Page: 281

View: 1948

DOWNLOAD NOW »
" . . . that famous pedagogical method whereby one begins with the general and proceeds to the particular only after the student is too confused to understand even that anymore. " Michael Spivak This text was written as an antidote to topology courses such as Spivak It is meant to provide the student with an experience in geomet describes. ric topology. Traditionally, the only topology an undergraduate might see is point-set topology at a fairly abstract level. The next course the average stu dent would take would be a graduate course in algebraic topology, and such courses are commonly very homological in nature, providing quick access to current research, but not developing any intuition or geometric sense. I have tried in this text to provide the undergraduate with a pragmatic introduction to the field, including a sampling from point-set, geometric, and algebraic topology, and trying not to include anything that the student cannot immediately experience. The exercises are to be considered as an in tegral part of the text and, ideally, should be addressed when they are met, rather than at the end of a block of material. Many of them are quite easy and are intended to give the student practice working with the definitions and digesting the current topic before proceeding. The appendix provides a brief survey of the group theory needed.

Complex Variables

Author: Joseph L. Taylor

Publisher: American Mathematical Soc.

ISBN: 0821869019

Category: Mathematics

Page: 305

View: 1853

DOWNLOAD NOW »
The text covers a broad spectrum between basic and advanced complex variables on the one hand and between theoretical and applied or computational material on the other hand. With careful selection of the emphasis put on the various sections, examples, and exercises, the book can be used in a one- or two-semester course for undergraduate mathematics majors, a one-semester course for engineering or physics majors, or a one-semester course for first-year mathematics graduate students. It has been tested in all three settings at the University of Utah. The exposition is clear, concise, and lively. There is a clean and modern approach to Cauchy's theorems and Taylor series expansions, with rigorous proofs but no long and tedious arguments. This is followed by the rich harvest of easy consequences of the existence of power series expansions. Through the central portion of the text, there is a careful and extensive treatment of residue theory and its application to computation of integrals, conformal mapping and its applications to applied problems, analytic continuation, and the proofs of the Picard theorems. Chapter 8 covers material on infinite products and zeroes of entire functions. This leads to the final chapter which is devoted to the Riemann zeta function, the Riemann Hypothesis, and a proof of the Prime Number Theorem.

Invitation to Classical Analysis

Author: Peter L. Duren

Publisher: American Mathematical Soc.

ISBN: 0821869329

Category: Mathematics

Page: 392

View: 4197

DOWNLOAD NOW »
This book gives a rigorous treatment of selected topics in classical analysis, with many applications and examples. The exposition is at the undergraduate level, building on basic principles of advanced calculus without appeal to more sophisticated techniques of complex analysis and Lebesgue integration. Among the topics covered are Fourier series and integrals, approximation theory, Stirling's formula, the gamma function, Bernoulli numbers and polynomials, the Riemann zeta function, Tauberian theorems, elliptic integrals, ramifications of the Cantor set, and a theoretical discussion of differential equations including power series solutions at regular singular points, Bessel functions, hypergeometric functions, and Sturm comparison theory. Preliminary chapters offer rapid reviews of basic principles and further background material such as infinite products and commonly applied inequalities. This book is designed for individual study but can also serve as a text for second-semester courses in advanced calculus. Each chapter concludes with an abundance of exercises. Historical notes discuss the evolution of mathematical ideas and their relevance to physical applications. Special features are capsule scientific biographies of the major players and a gallery of portraits. Although this book is designed for undergraduate students, others may find it an accessible source of information on classical topics that underlie modern developments in pure and applied mathematics.

Essential Topology

Author: Martin D. Crossley

Publisher: Springer Science & Business Media

ISBN: 9781852337827

Category: Mathematics

Page: 224

View: 3406

DOWNLOAD NOW »
This thoroughly modern introduction to undergraduate topology brings the most exciting and useful aspects of modern topology to the reader. Containing all the key results of basic topology, this book concentrates on uniting the most interesting aspects of the subject with aspects that are most useful to research. It is suitable for self-study, and will leave the reader both motivated and well prepared for further study.

Mathematical Analysis

An Introduction

Author: Andrew Browder

Publisher: Springer Science & Business Media

ISBN: 1461207150

Category: Mathematics

Page: 335

View: 5508

DOWNLOAD NOW »
Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

Classical Topology and Combinatorial Group Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 1461243726

Category: Mathematics

Page: 336

View: 3539

DOWNLOAD NOW »
In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.

Elementary Topology

Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov

Publisher: American Mathematical Soc.

ISBN: 9780821886250

Category:

Page: N.A

View: 8863

DOWNLOAD NOW »

Topology

Point-Set and Geometric

Author: Paul L. Shick

Publisher: John Wiley & Sons

ISBN: 9781118030585

Category: Mathematics

Page: 296

View: 8146

DOWNLOAD NOW »
The essentials of point-set topology, complete with motivation and numerous examples Topology: Point-Set and Geometric presents an introduction to topology that begins with the axiomatic definition of a topology on a set, rather than starting with metric spaces or the topology of subsets of Rn. This approach includes many more examples, allowing students to develop more sophisticated intuition and enabling them to learn how to write precise proofs in a brand-new context, which is an invaluable experience for math majors. Along with the standard point-set topology topics—connected and path-connected spaces, compact spaces, separation axioms, and metric spaces—Topology covers the construction of spaces from other spaces, including products and quotient spaces. This innovative text culminates with topics from geometric and algebraic topology (the Classification Theorem for Surfaces and the fundamental group), which provide instructors with the opportunity to choose which "capstone" best suits his or her students. Topology: Point-Set and Geometric features: A short introduction in each chapter designed to motivate the ideas and place them into an appropriate context Sections with exercise sets ranging in difficulty from easy to fairly challenging Exercises that are very creative in their approaches and work well in a classroom setting A supplemental Web site that contains complete and colorful illustrations of certain objects, several learning modules illustrating complicated topics, and animations of particularly complex proofs

A Readable Introduction to Real Mathematics

Author: Daniel Rosenthal,David Rosenthal,Peter Rosenthal

Publisher: Springer

ISBN: 3319056549

Category: Mathematics

Page: 161

View: 4368

DOWNLOAD NOW »
Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: mathematical induction - modular arithmetic - the fundamental theorem of arithmetic - Fermat's little theorem - RSA encryption - the Euclidean algorithm -rational and irrational numbers - complex numbers - cardinality - Euclidean plane geometry - constructability (including a proof that an angle of 60 degrees cannot be trisected with a straightedge and compass). This textbook is suitable for a wide variety of courses and for a broad range of students in the fields of education, liberal arts, physical sciences and mathematics. Students at the senior high school level who like mathematics will also be able to further their understanding of mathematical thinking by reading this book.

Geometry: Euclid and Beyond

Author: Robin Hartshorne

Publisher: Springer Science & Business Media

ISBN: 0387226761

Category: Mathematics

Page: 528

View: 8723

DOWNLOAD NOW »
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.

Partial Differential Equations and Boundary-value Problems with Applications

Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

ISBN: 0821868896

Category: Mathematics

Page: 526

View: 7411

DOWNLOAD NOW »
Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.

Groups and Symmetry

Author: Mark A. Armstrong

Publisher: Springer Science & Business Media

ISBN: 1475740344

Category: Mathematics

Page: 187

View: 8651

DOWNLOAD NOW »
This is a gentle introduction to the vocabulary and many of the highlights of elementary group theory. Written in an informal style, the material is divided into short sections, each of which deals with an important result or a new idea. Includes more than 300 exercises and approximately 60 illustrations.