Book of Curves

Author: E. H. Lockwood

Publisher: Cambridge University Press

ISBN: 0521044448

Category: Mathematics

Page: 212

View: 6806

DOWNLOAD NOW »
This book examines the shape of curves and their mathematical relationships.

Book of beautiful curves

Author: Prof Sebastian Vattamattam

Publisher: D C Books

ISBN: 9384786217

Category: Mathematics

Page: 83

View: 3819

DOWNLOAD NOW »
Book of beautiful curves with an introduction to functional theoretic algebras

Differential Geometry of Curves and Surfaces

Author: Masaaki Umehara,Kotaro Yamada

Publisher: World Scientific Publishing Company

ISBN: 9814740268

Category:

Page: 328

View: 8642

DOWNLOAD NOW »
This engrossing volume on curve and surface theories is the result of many years of experience the authors have had with teaching the most essential aspects of this subject. The first half of the text is suitable for a university-level course, without the need for referencing other texts, as it is completely self-contained. More advanced material in the second half of the book, including appendices, also serves more experienced students well. Furthermore, this text is also suitable for a seminar for graduate students, and for self-study. It is written in a robust style that gives the student the opportunity to continue his study at a higher level beyond what a course would usually offer. Further material is included, for example, closed curves, enveloping curves, curves of constant width, the fundamental theorem of surface theory, constant mean curvature surfaces, and existence of curvature line coordinates. Surface theory from the viewpoint of manifolds theory is explained, and encompasses higher level material that is useful for the more advanced student. This includes, but is not limited to, indices of umbilics, properties of cycloids, existence of conformal coordinates, and characterizing conditions for singularities. In summary, this textbook succeeds in elucidating detailed explanations of fundamental material, where the most essential basic notions stand out clearly, but does not shy away from the more advanced topics needed for research in this field. It provides a large collection of mathematically rich supporting topics. Thus, it is an ideal first textbook in this field. Request Inspection Copy

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 4630

DOWNLOAD NOW »
Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Handbook and Atlas of Curves

Author: Eugene V. Shikin

Publisher: CRC Press

ISBN: 1498710670

Category: Mathematics

Page: 560

View: 8666

DOWNLOAD NOW »
The Handbook and Atlas of Curves describes available analytic and visual properties of plane and spatial curves. Information is presented in a unique format, with one half of the book detailing investigation tools and the other devoted to the Atlas of Plane Curves. Main definitions, formulas, and facts from curve theory (plane and spatial) are disc

Modern Differential Geometry of Curves and Surfaces with Mathematica, Second Edition

Author: mary Gray

Publisher: CRC Press

ISBN: 9780849371646

Category: Mathematics

Page: 1088

View: 3563

DOWNLOAD NOW »
The Second Edition combines a traditional approach with the symbolic manipulation abilities of Mathematica to explain and develop the classical theory of curves and surfaces. You will learn to reproduce and study interesting curves and surfaces - many more than are included in typical texts - using computer methods. By plotting geometric objects and studying the printed result, teachers and students can understand concepts geometrically and see the effect of changes in parameters. Modern Differential Geometry of Curves and Surfaces with Mathematica explains how to define and compute standard geometric functions, for example the curvature of curves, and presents a dialect of Mathematica for constructing new curves and surfaces from old. The book also explores how to apply techniques from analysis. Although the book makes extensive use of Mathematica, readers without access to that program can perform the calculations in the text by hand. While single- and multi-variable calculus, some linear algebra, and a few concepts of point set topology are needed to understand the theory, no computer or Mathematica skills are required to understand the concepts presented in the text. In fact, it serves as an excellent introduction to Mathematica, and includes fully documented programs written for use with Mathematica. Ideal for both classroom use and self-study, Modern Differential Geometry of Curves and Surfaces with Mathematica has been tested extensively in the classroom and used in professional short courses throughout the world.

The Red Book of Varieties and Schemes

Includes the Michigan Lectures (1974) on Curves and their Jacobians

Author: David Mumford

Publisher: Springer

ISBN: 3540460217

Category: Mathematics

Page: 314

View: 1332

DOWNLOAD NOW »
Mumford's famous "Red Book" gives a simple, readable account of the basic objects of algebraic geometry, preserving as much as possible their geometric flavor and integrating this with the tools of commutative algebra. It is aimed at graduates or mathematicians in other fields wishing to quickly learn aboutalgebraic geometry. This new edition includes an appendix that gives an overview of the theory of curves, their moduli spaces and their Jacobians -- one of the most exciting fields within algebraic geometry.

Geometry of Curves

Author: J.W. Rutter

Publisher: CRC Press

ISBN: 9781584881667

Category: Mathematics

Page: 384

View: 8534

DOWNLOAD NOW »
Interest in the study of geometry is currently enjoying a resurgence-understandably so, as the study of curves was once the playground of some very great mathematicians. However, many of the subject's more exciting aspects require a somewhat advanced mathematics background. For the "fun stuff" to be accessible, we need to offer students an introduction with modest prerequisites, one that stimulates their interest and focuses on problem solving. Integrating parametric, algebraic, and projective curves into a single text, Geometry of Curves offers students a unique approach that provides a mathematical structure for solving problems, not just a catalog of theorems. The author begins with the basics, then takes students on a fascinating journey from conics, higher algebraic and transcendental curves, through the properties of parametric curves, the classification of limaçons, envelopes, and finally to projective curves, their relationship to algebraic curves, and their application to asymptotes and boundedness. The uniqueness of this treatment lies in its integration of the different types of curves, its use of analytic methods, and its generous number of examples, exercises, and illustrations. The result is a practical text, almost entirely self-contained, that not only imparts a deeper understanding of the theory, but inspires a heightened appreciation of geometry and interest in more advanced studies.

Differential Geometry of Curves and Surfaces

Author: Kristopher Tapp

Publisher: Springer

ISBN: 3319397990

Category: Mathematics

Page: 366

View: 5145

DOWNLOAD NOW »
This is a textbook on differential geometry well-suited to a variety of courses on this topic. For readers seeking an elementary text, the prerequisites are minimal and include plenty of examples and intermediate steps within proofs, while providing an invitation to more excursive applications and advanced topics. For readers bound for graduate school in math or physics, this is a clear, concise, rigorous development of the topic including the deep global theorems. For the benefit of all readers, the author employs various techniques to render the difficult abstract ideas herein more understandable and engaging. Over 300 color illustrations bring the mathematics to life, instantly clarifying concepts in ways that grayscale could not. Green-boxed definitions and purple-boxed theorems help to visually organize the mathematical content. Color is even used within the text to highlight logical relationships. Applications abound! The study of conformal and equiareal functions is grounded in its application to cartography. Evolutes, involutes and cycloids are introduced through Christiaan Huygens' fascinating story: in attempting to solve the famous longitude problem with a mathematically-improved pendulum clock, he invented mathematics that would later be applied to optics and gears. Clairaut’s Theorem is presented as a conservation law for angular momentum. Green’s Theorem makes possible a drafting tool called a planimeter. Foucault’s Pendulum helps one visualize a parallel vector field along a latitude of the earth. Even better, a south-pointing chariot helps one visualize a parallel vector field along any curve in any surface. In truth, the most profound application of differential geometry is to modern physics, which is beyond the scope of this book. The GPS in any car wouldn’t work without general relativity, formalized through the language of differential geometry. Throughout this book, applications, metaphors and visualizations are tools that motivate and clarify the rigorous mathematical content, but never replace it.

Differential Geometry of Curves and Surfaces

Revised and Updated Second Edition

Author: Manfredo P. do Carmo

Publisher: Courier Dover Publications

ISBN: 0486806995

Category: Mathematics

Page: 512

View: 5057

DOWNLOAD NOW »
One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.

Numerical Methods of Curve Fitting

Author: P. G. Guest,Philip George Guest

Publisher: Cambridge University Press

ISBN: 1107646952

Category: Mathematics

Page: 438

View: 8630

DOWNLOAD NOW »
First published in 1961, this book provides information on the methods of treating series of observations, the field covered embraces portions of both statistics and numerical analysis. Originally intended as an introduction to the topic aimed at students and graduates in physics, the types of observation discussed reflect the standard routine work of the time in the physical sciences. The text partly reflects an aim to offer a better balance between theory and practice, reversing the tendency of books on numerical analysis to omit numerical examples illustrating the applications of the methods. This book will be of value to anyone with an interest in the theoretical development of its field.

Differential Geometry of Curves and Surfaces

Author: Thomas F. Banchoff,Stephen T. Lovett

Publisher: CRC Press

ISBN: 1568814569

Category: Mathematics

Page: 352

View: 6772

DOWNLOAD NOW »
Students and professors of an undergraduate course in differential geometry will appreciate the clear exposition and comprehensive exercises in this book that focuses on the geometric properties of curves and surfaces, one- and two-dimensional objects in Euclidean space. The problems generally relate to questions of local properties (the properties observed at a point on the curve or surface) or global properties (the properties of the object as a whole). Some of the more interesting theorems explore relationships between local and global properties. A special feature is the availability of accompanying online interactive java applets coordinated with each section. The applets allow students to investigate and manipulate curves and surfaces to develop intuition and to help analyze geometric phenomena.

Differential Geometry

Author: J. J. Stoker

Publisher: John Wiley & Sons

ISBN: 9780471504030

Category: Mathematics

Page: 432

View: 8520

DOWNLOAD NOW »
This classic work is now available in an unabridged paperback edition. Stoker makes this fertile branch of mathematics accessible to the nonspecialist by the use of three different notations: vector algebra and calculus, tensor calculus, and the notation devised by Cartan, which employs invariant differential forms as elements in an algebra due to Grassman, combined with an operation called exterior differentiation. Assumed are a passing acquaintance with linear algebra and the basic elements of analysis.