Chow Rings, Decomposition of the Diagonal, and the Topology of Families (AM-187)

Author: Claire Voisin

Publisher: Princeton University Press

ISBN: 1400850533

Category: Mathematics

Page: 176

View: 888

DOWNLOAD NOW »
In this book, Claire Voisin provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The volume is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by Voisin. The book focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by Voisin looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.

The Fourier Transform for Certain HyperKahler Fourfolds

Author: Mingmin Shen,Charles Vial

Publisher: American Mathematical Soc.

ISBN: 1470417405

Category: Fourier transformations

Page: 161

View: 1742

DOWNLOAD NOW »
Using a codimension-1 algebraic cycle obtained from the Poincaré line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety A and showed that the Fourier transform induces a decomposition of the Chow ring CH∗(A). By using a codimension-2 algebraic cycle representing the Beauville-Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkähler varieties deformation equivalent to the Hilbert scheme of length-2 subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-2 subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.

Trends in Contemporary Mathematics

Author: Vincenzo Ancona,Elisabetta Strickland

Publisher: Springer

ISBN: 3319052543

Category: Mathematics

Page: 307

View: 9560

DOWNLOAD NOW »
The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.

The Geometry of Algebraic Cycles

Proceedings of the Conference on Algebraic Cycles, Columbus, Ohio, March 25-29, 2008

Author: Reza Akhtar,Patrick Brosnan,Roy Joshua

Publisher: American Mathematical Soc.

ISBN: 0821851918

Category: Mathematics

Page: 187

View: 9392

DOWNLOAD NOW »
The subject of algebraic cycles has its roots in the study of divisors, extending as far back as the nineteenth century. Since then, and in particular in recent years, algebraic cycles have made a significant impact on many fields of mathematics, among them number theory, algebraic geometry, and mathematical physics. The present volume contains articles on all of the above aspects of algebraic cycles. It also contains a mixture of both research papers and expository articles, so that it would be of interest to both experts and beginners in the field.

The Arithmetic of Fundamental Groups

PIA 2010

Author: Jakob Stix

Publisher: Springer Science & Business Media

ISBN: 3642239056

Category: Mathematics

Page: 380

View: 1382

DOWNLOAD NOW »
In the more than 100 years since the fundamental group was first introduced by Henri Poincaré it has evolved to play an important role in different areas of mathematics. Originally conceived as part of algebraic topology, this essential concept and its analogies have found numerous applications in mathematics that are still being investigated today, and which are explored in this volume, the result of a meeting at Heidelberg University that brought together mathematicians who use or study fundamental groups in their work with an eye towards applications in arithmetic. The book acknowledges the varied incarnations of the fundamental group: pro-finite, l-adic, p-adic, pro-algebraic and motivic. It explores a wealth of topics that range from anabelian geometry (in particular the section conjecture), the l-adic polylogarithm, gonality questions of modular curves, vector bundles in connection with monodromy, and relative pro-algebraic completions, to a motivic version of Minhyong Kim's non-abelian Chabauty method and p-adic integration after Coleman. The editor has also included the abstracts of all the talks given at the Heidelberg meeting, as well as the notes on Coleman integration and on Grothendieck's fundamental group with a view towards anabelian geometry taken from a series of introductory lectures given by Amnon Besser and Tamás Szamuely, respectively.

Differential Algebraic Topology

From Stratifolds to Exotic Spheres

Author: Matthias Kreck

Publisher: American Mathematical Soc.

ISBN: 0821848984

Category: Mathematics

Page: 218

View: 9188

DOWNLOAD NOW »
This book presents a geometric introduction to the homology of topological spaces and the cohomology of smooth manifolds. The author introduces a new class of stratified spaces, so-called stratifolds. He derives basic concepts from differential topology such as Sard's theorem, partitions of unity and transversality. Based on this, homology groups are constructed in the framework of stratifolds and the homology axioms are proved. This implies that for nice spaces these homology groups agree with ordinary singular homology. Besides the standard computations of homology groups using the axioms, straightforward constructions of important homology classes are given. The author also defines stratifold cohomology groups following an idea of Quillen. Again, certain important cohomology classes occur very naturally in this description, for example, the characteristic classes which are constructed in the book and applied later on. One of the most fundamental results, Poincare duality, is almost a triviality in this approach. Some fundamental invariants, such as the Euler characteristic and the signature, are derived from (co)homology groups. These invariants play a significant role in some of the most spectacular results in differential topology. In particular, the author proves a special case of Hirzebruch's signature theorem and presents as a highlight Milnor's exotic 7-spheres. This book is based on courses the author taught in Mainz and Heidelberg. Readers should be familiar with the basic notions of point-set topology and differential topology. The book can be used for a combined introduction to differential and algebraic topology, as well as for a quick presentation of (co)homology in a course about differential geometry.

Modular Forms and Special Cycles on Shimura Curves. (AM-161)

Author: Stephen S. Kudla,Michael Rapoport,Tonghai Yang

Publisher: Princeton University Press

ISBN: 9780691125510

Category: Mathematics

Page: 373

View: 8013

DOWNLOAD NOW »
Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soulé arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations. The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.

Torus Actions and Their Applications in Topology and Combinatorics

Author: V. M. Buchstaber,Taras E. Panov

Publisher: American Mathematical Soc.

ISBN: 0821831860

Category: Mathematics

Page: 144

View: 4250

DOWNLOAD NOW »
This book presents the study of torus actions on topological spaces that is presented as a bridge connecting combinatorial and convex geometry with commutative and homological algebra, algebraic geometry, and topology. This established link helps in understanding the geometry and topology of a space with torus action by studying the combinatorics of the space of orbits. Conversely, subtle properties of a combinatorial object can be realized by interpreting it as the orbit structure for a proper manifold or as a complex acted on by a torus. The latter can be a symplectic manifold with Hamiltonian torus action, a toric variety or manifold, a subspace arrangement complement, etc., while the combinatorial objects include simplicial and cubical complexes, polytopes, and arrangements.This approach also provides a natural topological interpretation in terms of torus actions of many constructions from commutative and homological algebra used in combinatorics. The exposition centers around the theory of moment-angle complexes, providing an effective way to study invariants of triangulations by methods of equivariant topology. The book includes many new and well-known open problems and would be suitable as a textbook. It will be useful for specialists both in topology and in combinatorics and will help to establish even tighter connections between the subjects involved.

A1-Algebraic Topology over a Field

Author: Fabien Morel

Publisher: Springer

ISBN: 3642295142

Category: Mathematics

Page: 259

View: 9390

DOWNLOAD NOW »
This text deals with A1-homotopy theory over a base field, i.e., with the natural homotopy theory associated to the category of smooth varieties over a field in which the affine line is imposed to be contractible. It is a natural sequel to the foundational paper on A1-homotopy theory written together with V. Voevodsky. Inspired by classical results in algebraic topology, we present new techniques, new results and applications related to the properties and computations of A1-homotopy sheaves, A1-homology sheaves, and sheaves with generalized transfers, as well as to algebraic vector bundles over affine smooth varieties.

Lecture Notes on Motivic Cohomology

Author: Carlo Mazza,Vladimir Voevodsky,Charles A. Weibel

Publisher: American Mathematical Soc.

ISBN: 082185321X

Category: Mathematics

Page: 216

View: 457

DOWNLOAD NOW »
The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five.

Rationality Problems in Algebraic Geometry

Levico Terme, Italy 2015

Author: Arnaud Beauville,Brendan Hassett,Alexander Kuznetsov,Alessandro Verra

Publisher: Springer

ISBN: 3319462091

Category: Mathematics

Page: 167

View: 2551

DOWNLOAD NOW »
Providing an overview of the state of the art on rationality questions in algebraic geometry, this volume gives an update on the most recent developments. It offers a comprehensive introduction to this fascinating topic, and will certainly become an essential reference for anybody working in the field. Rationality problems are of fundamental importance both in algebra and algebraic geometry. Historically, rationality problems motivated significant developments in the theory of abelian integrals, Riemann surfaces and the Abel–Jacobi map, among other areas, and they have strong links with modern notions such as moduli spaces, Hodge theory, algebraic cycles and derived categories. This text is aimed at researchers and graduate students in algebraic geometry.

Grothendieck-Serre Correspondence

Author: Alexandre Grothendieck,Pierre Colmez,Jean Pierre Serre

Publisher: American Mathematical Soc.

ISBN: 082183424X

Category: Mathematics

Page: 576

View: 6244

DOWNLOAD NOW »
The book is a bilingual (French and English) edition of the mathematical correspondence between A. Grothendieck and J-P. Serre. The original French text of 84 letters is supplemented here by the English translation, with French text printed on the left-hand pages and the corresponding English text printed on the right-hand pages. The book also includes several facsimiles of original letters. The letters presented in the book were mainly written between 1955 and 1965. During this period, algebraic geometry went through a remarkable transformation, and Grothendieck and Serre were among central figures in this process. The reader can follow the creation of some of the most important notions of modern mathematics, like sheaf cohomology, schemes, Riemann-Roch type theorems, algebraic fundamental group, motives. The letters also reflect the mathematical and political atmosphere of this period (Bourbaki, Paris, Harvard, Princeton, war in Algeria, etc.). Also included are a few letters written between 1984 and 1987. The letters are supplemented by J-P. Serre's notes, which give explanations, corrections, and references further results. The book should be useful to specialists in algebraic geometry, in history of mathematics, and to all mathematicians who want to understand how great mathematics is created.

Mirror Symmetry

Author: Claire Voisin

Publisher: American Mathematical Soc.

ISBN: 9780821819470

Category: Science

Page: 120

View: 2407

DOWNLOAD NOW »
Inaugural volume in a new series copublished with the French Math Society. These are books that have been translated into English from the French, and which are written by top French mathematicians. This particular one has been a classic in the original French.

The Proof is in the Pudding

The Changing Nature of Mathematical Proof

Author: Steven G. Krantz

Publisher: Springer Science & Business Media

ISBN: 9780387487441

Category: Mathematics

Page: 264

View: 3384

DOWNLOAD NOW »
This text explores the many transformations that the mathematical proof has undergone from its inception to its versatile, present-day use, considering the advent of high-speed computing machines. Though there are many truths to be discovered in this book, by the end it is clear that there is no formalized approach or standard method of discovery to date. Most of the proofs are discussed in detail with figures and equations accompanying them, allowing both the professional mathematician and those less familiar with mathematics to derive the same joy from reading this book.

The Geometry of Syzygies

A Second Course in Algebraic Geometry and Commutative Algebra

Author: David Eisenbud

Publisher: Springer Science & Business Media

ISBN: 0387264566

Category: Mathematics

Page: 246

View: 6001

DOWNLOAD NOW »
First textbook-level account of basic examples and techniques in this area. Suitable for self-study by a reader who knows a little commutative algebra and algebraic geometry already. David Eisenbud is a well-known mathematician and current president of the American Mathematical Society, as well as a successful Springer author.

The Ricci Flow in Riemannian Geometry

A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem

Author: Ben Andrews,Christopher Hopper

Publisher: Springer Science & Business Media

ISBN: 3642162851

Category: Mathematics

Page: 296

View: 7310

DOWNLOAD NOW »
Focusing on Hamilton's Ricci flow, this volume begins with a detailed discussion of the required aspects of differential geometry. The discussion also includes existence and regularity theory, compactness theorems for Riemannian manifolds, and much more.

Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change

Author: Jayce Getz,Mark Goresky

Publisher: Springer Science & Business Media

ISBN: 3034803516

Category: Mathematics

Page: 258

View: 7069

DOWNLOAD NOW »
In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.

Enlightening Symbols

A Short History of Mathematical Notation and Its Hidden Powers

Author: Joseph Mazur

Publisher: N.A

ISBN: 9780691173375

Category: Mathematics

Page: 312

View: 7908

DOWNLOAD NOW »
While all of us regularly use basic math symbols such as those for plus, minus, and equals, few of us know that many of these symbols weren't available before the sixteenth century. What did mathematicians rely on for their work before then? And how did mathematical notations evolve into what we know today? In "Enlightening Symbols," popular math writer Joseph Mazur explains the fascinating history behind the development of our mathematical notation system. He shows how symbols were used initially, how one symbol replaced another over time, and how written math was conveyed before and after symbols became widely adopted. Traversing mathematical history and the foundations of numerals in different cultures, Mazur looks at how historians have disagreed over the origins of the numerical system for the past two centuries. He follows the transfigurations of algebra from a rhetorical style to a symbolic one, demonstrating that most algebra before the sixteenth century was written in prose or in verse employing the written names of numerals. Mazur also investigates the subconscious and psychological effects that mathematical symbols have had on mathematical thought, moods, meaning, communication, and comprehension. He considers how these symbols influence us (through similarity, association, identity, resemblance, and repeated imagery), how they lead to new ideas by subconscious associations, how they make connections between experience and the unknown, and how they contribute to the communication of basic mathematics. From words to abbreviations to symbols, this book shows how math evolved to the familiar forms we use today.

Epsilon of Room, Two

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821852809

Category: Mathematics

Page: 248

View: 8221

DOWNLOAD NOW »
There are many bits and pieces of folklore in mathematics that are passed down from advisor to student, or from collaborator to collaborator, but which are too fuzzy and nonrigorous to be discussed in the formal literature. Traditionally, it was a matter of luck and location as to who learned such ``folklore mathematics''. But today, such bits and pieces can be communicated effectively and efficiently via the semiformal medium of research blogging. This book grew from such a blog. In 2007 Terry Tao began a mathematical blog to cover a variety of topics, ranging from his own research and other recent developments in mathematics, to lecture notes for his classes, to nontechnical puzzles and expository articles. The first two years of the blog have already been published by the American Mathematical Society. The posts from the third year are being published in two volumes. This second volume contains a broad selection of mathematical expositions and self-contained technical notes in many areas of mathematics, such as logic, mathematical physics, combinatorics, number theory, statistics, theoretical computer science, and group theory. Tao has an extraordinary ability to explain deep results to his audience, which has made his blog quite popular. Some examples of this facility in the present book are the tale of two students and a multiple-choice exam being used to explain the $P = NP$ conjecture and a discussion of "no self-defeating object" arguments that starts from a schoolyard number game and ends with results in logic, game theory, and theoretical physics. The first volume consists of a second course in real analysis, together with related material from the blog, and it can be read independently.