Concepts and Results in Chaotic Dynamics: A Short Course

Author: Pierre Collet,Jean-Pierre Eckmann

Publisher: Springer Science & Business Media

ISBN: 3540347062

Category: Mathematics

Page: 232

View: 7981

DOWNLOAD NOW »
The study of dynamical systems is a well established field. This book provides a panorama of several aspects of interest to mathematicians and physicists. It collects the material of several courses at the graduate level given by the authors, avoiding detailed proofs in exchange for numerous illustrations and examples. Apart from common subjects in this field, a lot of attention is given to questions of physical measurement and stochastic properties of chaotic dynamical systems.

Chaos

From Simple Models to Complex Systems

Author: Angelo Vulpiani

Publisher: World Scientific

ISBN: 9814277665

Category: Chaotic behavior in systems

Page: 480

View: 1823

DOWNLOAD NOW »
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.

Patterns of Dynamics

Berlin, July 2016

Author: Pavel Gurevich,Juliette Hell,Björn Sandstede,Arnd Scheel

Publisher: Springer

ISBN: 3319641735

Category: Mathematics

Page: 408

View: 5662

DOWNLOAD NOW »
Theoretical advances in dynamical-systems theory and their applications to pattern-forming processes in the sciences and engineering are discussed in this volume that resulted from the conference Patterns in Dynamics held in honor of Bernold Fiedler, in Berlin, July 25-29, 2016.The contributions build and develop mathematical techniques, and use mathematical approaches for prediction and control of complex systems. The underlying mathematical theories help extract structures from experimental observations and, conversely, shed light on the formation, dynamics, and control of spatio-temporal patterns in applications. Theoretical areas covered include geometric analysis, spatial dynamics, spectral theory, traveling-wave theory, and topological data analysis; also discussed are their applications to chemotaxis, self-organization at interfaces, neuroscience, and transport processes.

From Nucleons to Nucleus

Concepts of Microscopic Nuclear Theory

Author: Jouni Suhonen

Publisher: Springer Science & Business Media

ISBN: 3540488618

Category: Science

Page: 648

View: 8205

DOWNLOAD NOW »
From Nucleons to Nucleus deals with single-particle and collective features of spherical nuclei. Each nuclear model is introduced and derived in detail. The formalism is then applied to light and medium-heavy nuclei in worked-out examples, and finally the acquired skills are strengthened by a wide selection of exercises, many relating the models to experimental data. Nuclear properties are discussed using particles, holes and quasi-particles. From Nucleons to Nucleus is based on lectures on nuclear physics given by the author, and serves well as a textbook for advanced students. Researchers too will appreciate it as a well-balanced reference to theoretical nuclear physics.

Chaos: A Very Short Introduction

Author: Leonard Smith

Publisher: OUP Oxford

ISBN: 0191579432

Category: Science

Page: 200

View: 5471

DOWNLOAD NOW »
Chaos exists in systems all around us. Even the simplest system of cause and effect can be subject to chaos, denying us accurate predictions of its behaviour, and sometimes giving rise to astonishing structures of large-scale order. Our growing understanding of Chaos Theory is having fascinating applications in the real world - from technology to global warming, politics, human behaviour, and even gambling on the stock market. Leonard Smith shows that we all have an intuitive understanding of chaotic systems. He uses accessible maths and physics (replacing complex equations with simple examples like pendulums, railway lines, and tossing coins) to explain the theory, and points to numerous examples in philosophy and literature (Edgar Allen Poe, Chang-Tzu, Arthur Conan Doyle) that illuminate the problems. The beauty of fractal patterns and their relation to chaos, as well as the history of chaos, and its uses in the real world and implications for the philosophy of science are all discussed in this Very Short Introduction. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.

Understanding Nonlinear Dynamics

Author: Daniel Kaplan,Leon Glass

Publisher: Springer Science & Business Media

ISBN: 1461208238

Category: Mathematics

Page: 420

View: 9986

DOWNLOAD NOW »
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.

A First Course in Discrete Dynamical Systems

Author: Richard A. Holmgren

Publisher: Springer Science & Business Media

ISBN: 1441987320

Category: Mathematics

Page: 223

View: 1167

DOWNLOAD NOW »
Given the ease with which computers can do iteration it is now possible for almost anyone to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. Mathematica programs that illustrate the dynamics are included in an appendix.

Aspects of Ergodic, Qualitative and Statistical Theory of Motion

Author: Giovanni Gallavotti,Federico Bonetto,Guido Gentile

Publisher: Springer Science & Business Media

ISBN: 9783540408796

Category: Mathematics

Page: 435

View: 2771

DOWNLOAD NOW »
Intended for beginners in ergodic theory, this introductory textbook addresses students as well as researchers in mathematical physics. The main novelty is the systematic treatment of characteristic problems in ergodic theory by a unified method in terms of convergent power series and renormalization group methods, in particular. Basic concepts of ergodicity, like Gibbs states, are developed and applied to, e.g., Asonov systems or KAM Theroy. Many examples illustrate the ideas and, in addition, a substantial number of interesting topics are treated in the form of guided problems.

Chaos and Complexity in Astrophysics

Author: O. Regev

Publisher: Cambridge University Press

ISBN: 9780521855341

Category: Mathematics

Page: 455

View: 9266

DOWNLOAD NOW »
A 2006 primer for researchers and graduate students; introduces and applies chaos techniques to specific astrophysical systems.

Chaos

An Introduction to Dynamical Systems

Author: Kathleen Alligood,Tim Sauer,J.A. Yorke

Publisher: Springer

ISBN: 3642592813

Category: Mathematics

Page: 603

View: 9519

DOWNLOAD NOW »
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

Leadership and the New Science

Discovering Order in a Chaotic World

Author: Margaret J. Wheatley

Publisher: ReadHowYouWant.com

ISBN: 145877760X

Category: Business & Economics

Page: 386

View: 2161

DOWNLOAD NOW »
A bestseller--more than 300,000 copies sold, translated into seventeen languages, and featured in the Los Angeles Times, Washington Post, Miami Herald, Harvard Business Review, Fast Company, and Fortune; Shows how discoveries in quantum physics, biology, and chaos theory enable us to deal successfully with change and uncertainty in our organizations and our lives; Includes a new chapter on how the new sciences can help us understand and cope with some of the major social challenges of our times We live in a time of chaos, rich in potential for new possibilities. A new world is being born. We need new ideas, new ways of seeing, and new relationships to help us now. New science--the new discoveries in biology, chaos theory, and quantum physics that are changing our understanding of how the world works--offers this guidance. It describes a world where chaos is natural, where order exists ''for free.'' It displays the intricate webs of cooperation that connect us. It assures us that life seeks order, but uses messes to get there. Leadership and the New Science is the bestselling, most acclaimed, and most influential guide to applying the new science to organizations and management. In it, Wheatley describes how the new science radically alters our understanding of the world, and how it can teach us to live and work well together in these chaotic times. It will teach you how to move with greater certainty and easier grace into the new forms of organizations and communities that are taking shape.

Discrete Dynamical Systems and Difference Equations with Mathematica

Author: Mustafa R.S. Kulenovic,Orlando Merino

Publisher: CRC Press

ISBN: 1420035355

Category: Mathematics

Page: 360

View: 5014

DOWNLOAD NOW »
Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find basins of attraction. Modern computer algebra systems have opened the door to the use of symbolic calculation for studying difference equations. This book offers an introduction to discrete dynamical systems and difference equations and presents the Dynamica software. Developed by the authors and based on Mathematica, Dynamica provides an easy-to-use collection of algebraic, numerical, and graphical tools and techniques that allow users to quickly gain the ability to: Find and classify the stability character of equilibrium and periodic points Perform semicycle analysis of solutions Calculate and visualize invariants Calculate and visualize Lyapunov functions and numbers Plot bifurcation diagrams Visualize stable and unstable manifolds Calculate Box Dimension While it presents the essential theoretical concepts and results, the book's emphasis is on using the software. The authors present two sets of Dynamica sessions: one that serves as a tutorial of the different techniques, the other features case studies of well-known difference equations. Dynamica and notebooks corresponding to particular chapters are available for download from the Internet.

The Topology of Chaos

Alice in Stretch and Squeezeland

Author: Robert Gilmore,Marc Lefranc

Publisher: John Wiley & Sons

ISBN: 352763942X

Category: Mathematics

Page: 618

View: 461

DOWNLOAD NOW »
A highly valued resource for those who wish to move from the introductory and preliminary understandings and the measurement of chaotic behavior to a more sophisticated and precise understanding of chaotic systems. The authors provide a deep understanding of the structure of strange attractors, how they are classified, and how the information required to identify and classify a strange attractor can be extracted from experimental data. In its first edition, the Topology of Chaos has been a valuable resource for physicist and mathematicians interested in the topological analysis of dynamical systems. Since its publication in 2002, important theoretical and experimental advances have put the topological analysis program on a firmer basis. This second edition includes relevant results and connects the material to other recent developments. Following significant improvements will be included: * A gentler introduction to the topological analysis of chaotic systems for the non expert which introduces the problems and questions that one commonly encounters when observing a chaotic dynamics and which are well addressed by a topological approach: existence of unstable periodic orbits, bifurcation sequences, multistability etc. * A new chapter is devoted to bounding tori which are essential for achieving generality as well as for understanding the influence of boundary conditions. * The new edition also reflects the progress which had been made towards extending topological analysis to higher-dimensional systems by proposing a new formalism where evolving triangulations replace braids. * There has also been much progress in the understanding of what is a good representation of a chaotic system, and therefore a new chapter is devoted to embeddings. * The chapter on topological analysis program will be expanded to cover traditional measures of chaos. This will help to connect those readers who are familiar with those measures and tests to the more sophisticated methodologies discussed in detail in this book. * The addition of the Appendix with both frequently asked and open questions with answers gathers the most essential points readers should keep in mind and guides to corresponding sections in the book. This will be of great help to those who want to selectively dive into the book and its treatments rather than reading it cover to cover. What makes this book special is its attempt to classify real physical systems (e.g. lasers) using topological techniques applied to real date (e.g. time series). Hence it has become the experimenter?s guidebook to reliable and sophisticated studies of experimental data for comparison with candidate relevant theoretical models, inevitable to physicists, mathematicians, and engineers studying low-dimensional chaotic systems.

Instabilities, Chaos and Turbulence

Author: Paul Manneville

Publisher: World Scientific

ISBN: 1848163924

Category: Science

Page: 439

View: 964

DOWNLOAD NOW »
This book (2nd edition) is a self-contained introduction to a wide body of knowledge on nonlinear dynamics and chaos. Manneville emphasises the understanding of basic concepts and the nontrivial character of nonlinear response, contrasting it with the intuitively simple linear response. He explains the theoretical framework using pedagogical examples from fluid dynamics, though prior knowledge of this field is not required. Heuristic arguments and worked examples replace most esoteric technicalities. Only basic understanding of mathematics and physics is required, at the level of what is currently known after one or two years of undergraduate training: elementary calculus, basic notions of linear algebra and ordinary differential calculus, and a few fundamental physical equations (specific complements are provided when necessary). Methods presented are of fully general use, which opens up ample windows on topics of contemporary interest. These include complex dynamical processes such as patterning, chaos control, mixing, and even the Earth's climate. Numerical simulations are proposed as a means to obtain deeper understanding of the intricacies induced by nonlinearities in our everyday environment, with hints on adapted modelling strategies and their implementation.

Ordinary Differential Equations and Dynamical Systems

Author: Gerald Teschl

Publisher: American Mathematical Soc.

ISBN: 0821883283

Category: Mathematics

Page: 356

View: 9926

DOWNLOAD NOW »
This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.

Deterministic Nonlinear Systems

A Short Course

Author: Vadim S. Anishchenko,Tatyana E. Vadivasova,Galina I. Strelkova

Publisher: Springer

ISBN: 3319068717

Category: Science

Page: 294

View: 8498

DOWNLOAD NOW »
This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems. This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research.

Applied Chaos Theory

A Paradigm for Complexity

Author: Ali Bulent Cambel

Publisher: Elsevier

ISBN: 0080571360

Category: Science

Page: 246

View: 456

DOWNLOAD NOW »
This book differs from others on Chaos Theory in that it focuses on its applications for understanding complex phenomena. The emphasis is on the interpretation of the equations rather than on the details of the mathematical derivations. The presentation is interdisciplinary in its approach to real-life problems: it integrates nonlinear dynamics, nonequilibrium thermodynamics, information theory, and fractal geometry. An effort has been made to present the material ina reader-friendly manner, and examples are chosen from real life situations. Recent findings on the diagnostics and control of chaos are presented, and suggestions are made for setting up a simple laboratory. Included is a list of topics for further discussion that may serve not only for personal practice or homework, but also as themes for theses, dissertations, and research proposals. Key Features *Includes laboratory experiments Includes applications and case studies related to cell differentiation, EKGs, and immunology * Presents interdisciplinary applications of chaos theory to complex systems * Emphasizes the meaning of mathematical equations rather than their derivations * Features reader friendly presentation with many illustrations and interpretations * Deals with real life, dissipative systemsIntegrates mathematical theory throughout the text

Synchronization

A Universal Concept in Nonlinear Sciences

Author: Arkady Pikovsky,Michael Rosenblum,Jürgen Kurths

Publisher: Cambridge University Press

ISBN: 9780521533522

Category: Mathematics

Page: 411

View: 3565

DOWNLOAD NOW »
First recognized in 1665 by Christiaan Huygens, synchronization phenomena are abundant in science, nature, engineering and social life. Systems as diverse as clocks, singing crickets, cardiac pacemakers, firing neurons and applauding audiences exhibit a tendency to operate in synchrony. These phenomena are universal and can be understood within a common framework based on modern nonlinear dynamics. The first half of this book describes synchronization without formulae, and is based on qualitative intuitive ideas. The main effects are illustrated with experimental examples and figures, and the historical development is outlined. The remainder of the book presents the main effects of synchronization in a rigorous and systematic manner, describing classical results on synchronization of periodic oscillators, and recent developments in chaotic systems, large ensembles, and oscillatory media. This comprehensive book will be of interest to a broad audience, from graduate students to specialist researchers in physics, applied mathematics, engineering and natural sciences.

Chaos and Order

Complex Dynamics in Literature and Science

Author: N. Katherine Hayles

Publisher: University of Chicago Press

ISBN: 9780226321448

Category: Literary Criticism

Page: 308

View: 6707

DOWNLOAD NOW »
The scientific discovery that chaotic systems embody deep structures of order is one of such wide-ranging implications that it has attracted attention across a spectrum of disciplines, including the humanities. In this volume, fourteen theorists explore the significance for literary and cultural studies of the new paradigm of chaotics, forging connections between contemporary literature and the science of chaos. They examine how changing ideas of order and disorder enable new readings of scientific and literary texts, from Newton's Principia to Ruskin's autobiography, from Victorian serial fiction to Borges's short stories. N. Katherine Hayles traces shifts in meaning that chaos has undergone within the Western tradition, suggesting that the science of chaos articulates categories that cannot be assimilated into the traditional dichotomy of order and disorder. She and her contributors take the relation between order and disorder as a theme and develop its implications for understanding texts, metaphors, metafiction, audience response, and the process of interpretation itself. Their innovative and diverse work opens the interdisciplinary field of chaotics to literary inquiry.