Cryptanalysis of Number Theoretic Ciphers

Author: Samuel S. Wagstaff, Jr.

Publisher: CRC Press

ISBN: 9781584881537

Category: Mathematics

Page: 336

View: 825

DOWNLOAD NOW »
At the heart of modern cryptographic algorithms lies computational number theory. Whether you're encrypting or decrypting ciphers, a solid background in number theory is essential for success. Written by a number theorist and practicing cryptographer, Cryptanalysis of Number Theoretic Ciphers takes you from basic number theory to the inner workings of ciphers and protocols. First, the book provides the mathematical background needed in cryptography as well as definitions and simple examples from cryptography. It includes summaries of elementary number theory and group theory, as well as common methods of finding or constructing large random primes, factoring large integers, and computing discrete logarithms. Next, it describes a selection of cryptographic algorithms, most of which use number theory. Finally, the book presents methods of attack on the cryptographic algorithms and assesses their effectiveness. For each attack method the author lists the systems it applies to and tells how they may be broken with it. Computational number theorists are some of the most successful cryptanalysts against public key systems. Cryptanalysis of Number Theoretic Ciphers builds a solid foundation in number theory and shows you how to apply it not only when breaking ciphers, but also when designing ones that are difficult to break.

Elliptic Curves

Number Theory and Cryptography

Author: Lawrence C. Washington

Publisher: CRC Press

ISBN: 9780203484029

Category: Mathematics

Page: 440

View: 9530

DOWNLOAD NOW »
Elliptic curves have played an increasingly important role in number theory and related fields over the last several decades, most notably in areas such as cryptography, factorization, and the proof of Fermat's Last Theorem. However, most books on the subject assume a rather high level of mathematical sophistication, and few are truly accessible to senior undergraduate or beginning graduate students. Assuming only a modest background in elementary number theory, groups, and fields, Elliptic Curves: Number Theory and Cryptography introduces both the cryptographic and number theoretic sides of elliptic curves, interweaving the theory of elliptic curves with their applications. The author introduces elliptic curves over finite fields early in the treatment, leading readers directly to the intriguing cryptographic applications, but the book is structured so that readers can explore the number theoretic aspects independently if desired. By side-stepping algebraic geometry in favor an approach based on basic formulas, this book clearly demonstrates how elliptic curves are used and opens the doors to higher-level studies. Elliptic Curves offers a solid introduction to the mathematics and applications of elliptic curves that well prepares its readers to tackle more advanced problems in cryptography and number theory.

Computational Number Theory and Modern Cryptography

Author: Song Y. Yan

Publisher: John Wiley & Sons

ISBN: 1118188616

Category: Computers

Page: 432

View: 6171

DOWNLOAD NOW »
The only book to provide a unified view of the interplay betweencomputational number theory and cryptography Computational number theory and modern cryptography are two ofthe most important and fundamental research fields in informationsecurity. In this book, Song Y. Yang combines knowledge of thesetwo critical fields, providing a unified view of the relationshipsbetween computational number theory and cryptography. The authortakes an innovative approach, presenting mathematical ideas first,thereupon treating cryptography as an immediate application of themathematical concepts. The book also presents topics from numbertheory, which are relevant for applications in public-keycryptography, as well as modern topics, such as coding and latticebased cryptography for post-quantum cryptography. The authorfurther covers the current research and applications for commoncryptographic algorithms, describing the mathematical problemsbehind these applications in a manner accessible to computerscientists and engineers. Makes mathematical problems accessible to computer scientistsand engineers by showing their immediate application Presents topics from number theory relevant for public-keycryptography applications Covers modern topics such as coding and lattice basedcryptography for post-quantum cryptography Starts with the basics, then goes into applications and areasof active research Geared at a global audience; classroom tested in North America,Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s CompanionWebsite Computational Number Theory and Modern Cryptography isideal for graduate and advanced undergraduate students incomputer science, communications engineering, cryptography andmathematics. Computer scientists, practicing cryptographers, andother professionals involved in various security schemes will alsofind this book to be a helpful reference.

Computational Number Theory

Author: Abhijit Das

Publisher: CRC Press

ISBN: 1482205823

Category: Computers

Page: 614

View: 4252

DOWNLOAD NOW »
Developed from the author’s popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and practitioners of cryptography in industry. Requiring no prior experience with number theory or sophisticated algebraic tools, the book covers many computational aspects of number theory and highlights important and interesting engineering applications. It first builds the foundation of computational number theory by covering the arithmetic of integers and polynomials at a very basic level. It then discusses elliptic curves, primality testing, algorithms for integer factorization, computing discrete logarithms, and methods for sparse linear systems. The text also shows how number-theoretic tools are used in cryptography and cryptanalysis. A dedicated chapter on the application of number theory in public-key cryptography incorporates recent developments in pairing-based cryptography. With an emphasis on implementation issues, the book uses the freely available number-theory calculator GP/PARI to demonstrate complex arithmetic computations. The text includes numerous examples and exercises throughout and omits lengthy proofs, making the material accessible to students and practitioners.

Public-Key Cryptography and Computational Number Theory

Proceedings of the International Conference organized by the Stefan Banach International Mathematical Center Warsaw, Poland, September 11-15, 2000

Author: Kazimierz Alster,Jerzy Urbanowicz,Hugh C. Williams

Publisher: Walter de Gruyter

ISBN: 3110881039

Category: Mathematics

Page: 343

View: 6739

DOWNLOAD NOW »
The Proceedings contain twenty selected, refereed contributions arising from the International Conference on Public-Key Cryptography and Computational Number Theory held in Warsaw, Poland, on September 11-15, 2000. The conference, attended by eightyfive mathematicians from eleven countries, was organized by the Stefan Banach International Mathematical Center. This volume contains articles from leading experts in the world on cryptography and computational number theory, providing an account of the state of research in a wide variety of topics related to the conference theme. It is dedicated to the memory of the Polish mathematicians Marian Rejewski (1905-1980), Jerzy Róøycki (1909-1942) and Henryk Zygalski (1907-1978), who deciphered the military version of the famous Enigma in December 1932 – January 1933. A noteworthy feature of the volume is a foreword written by Andrew Odlyzko on the progress in cryptography from Enigma time until now.

Cryptanalytic Attacks on RSA

Author: Song Y. Yan

Publisher: Springer Science & Business Media

ISBN: 0387487425

Category: Computers

Page: 255

View: 6850

DOWNLOAD NOW »
RSA is a public-key cryptographic system, and is the most famous and widely-used cryptographic system in today's digital world. Cryptanalytic Attacks on RSA, a professional book, covers almost all known cryptanalytic attacks and defenses of the RSA cryptographic system and its variants. Since RSA depends heavily on computational complexity theory and number theory, background information on complexity theory and number theory is presented first, followed by an account of the RSA cryptographic system and its variants. This book is also suitable as a secondary text for advanced-level students in computer science and mathematics.

Modern Cryptanalysis

Techniques for Advanced Code Breaking

Author: Christopher Swenson

Publisher: John Wiley & Sons

ISBN: 1118428625

Category: Computers

Page: 264

View: 8584

DOWNLOAD NOW »
As an instructor at the University of Tulsa, Christopher Swenson could find no relevant text for teaching modern cryptanalysis?so he wrote his own. This is the first book that brings the study of cryptanalysis into the 21st century. Swenson provides a foundation in traditional cryptanalysis, examines ciphers based on number theory, explores block ciphers, and teaches the basis of all modern cryptanalysis: linear and differential cryptanalysis. This time-honored weapon of warfare has become a key piece of artillery in the battle for information security.

Cryptography

Theory and Practice, Third Edition

Author: Douglas R. Stinson

Publisher: CRC Press

ISBN: 1584885084

Category: Computers

Page: 616

View: 8903

DOWNLOAD NOW »
THE LEGACY... First introduced in 1995, Cryptography: Theory and Practice garnered enormous praise and popularity, and soon became the standard textbook for cryptography courses around the world. The second edition was equally embraced, and enjoys status as a perennial bestseller. Now in its third edition, this authoritative text continues to provide a solid foundation for future breakthroughs in cryptography. WHY A THIRD EDITION? The art and science of cryptography has been evolving for thousands of years. Now, with unprecedented amounts of information circling the globe, we must be prepared to face new threats and employ new encryption schemes on an ongoing basis. This edition updates relevant chapters with the latest advances and includes seven additional chapters covering: Pseudorandom bit generation in cryptography Entity authentication, including schemes built from primitives and special purpose "zero-knowledge" schemes Key establishment including key distribution and protocols for key agreement, both with a greater emphasis on security models and proofs Public key infrastructure, including identity-based cryptography Secret sharing schemes Multicast security, including broadcast encryption and copyright protection THE RESULT... Providing mathematical background in a "just-in-time" fashion, informal descriptions of cryptosystems along with more precise pseudocode, and a host of numerical examples and exercises, Cryptography: Theory and Practice, Third Edition offers comprehensive, in-depth treatment of the methods and protocols that are vital to safeguarding the mind-boggling amount of information circulating around the world.

Number Theory and Cryptography

Author: J. H. Loxton

Publisher: Cambridge University Press

ISBN: 0521398770

Category: Mathematics

Page: 235

View: 5090

DOWNLOAD NOW »
Papers presented by prominent contributors at a workshop on Number Theory and Cryptography, and the annual meeting of the Australian Mathematical Society.

Non-commutative Cryptography and Complexity of Group-theoretic Problems

Author: Alexei G. Myasnikov,Vladimir Shpilrain,Alexander Ushakov

Publisher: American Mathematical Soc.

ISBN: 0821853600

Category: Mathematics

Page: 385

View: 4188

DOWNLOAD NOW »
This book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It explores how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public key cryptography. It also shows that there is remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory, and they open many interesting research avenues within group theory. In particular, a lot of emphasis in the book is put on studying search problems, as compared to decision problems traditionally studied in combinatorial group theory. Then, complexity theory, notably generic-case complexity of algorithms, is employed for cryptanalysis of various cryptographic protocols based on infinite groups, and the ideas and machinery from the theory of generic-case complexity are used to study asymptotically dominant properties of some infinite groups that have been applied in public key cryptography so far. This book also describes new interesting developments in the algorithmic theory of solvable groups and another spectacular new development related to complexity of group-theoretic problems, which is based on the ideas of compressed words and straight-line programs coming from computer science.

Introduction to Cryptography with Maple

Author: José Luis Gómez Pardo

Publisher: Springer Science & Business Media

ISBN: 3642321666

Category: Computers

Page: 706

View: 1202

DOWNLOAD NOW »
This introduction to cryptography employs a programming-oriented approach to study the most important cryptographic schemes in current use and the main cryptanalytic attacks against them. Discussion of the theoretical aspects, emphasizing precise security definitions based on methodological tools such as complexity and randomness, and of the mathematical aspects, with emphasis on number-theoretic algorithms and their applications to cryptography and cryptanalysis, is integrated with the programming approach, thus providing implementations of the algorithms and schemes as well as examples of realistic size. A distinctive feature of the author's approach is the use of Maple as a programming environment in which not just the cryptographic primitives but also the most important cryptographic schemes are implemented following the recommendations of standards bodies such as NIST, with many of the known cryptanalytic attacks implemented as well. The purpose of the Maple implementations is to let the reader experiment and learn, and for this reason the author includes numerous examples. The book discusses important recent subjects such as homomorphic encryption, identity-based cryptography and elliptic curve cryptography. The algorithms and schemes which are treated in detail and implemented in Maple include AES and modes of operation, CMAC, GCM/GMAC, SHA-256, HMAC, RSA, Rabin, Elgamal, Paillier, Cocks IBE, DSA and ECDSA. In addition, some recently introduced schemes enjoying strong security properties, such as RSA-OAEP, Rabin-SAEP, Cramer--Shoup, and PSS, are also discussed and implemented. On the cryptanalysis side, Maple implementations and examples are used to discuss many important algorithms, including birthday and man-in-the-middle attacks, integer factorization algorithms such as Pollard's rho and the quadratic sieve, and discrete log algorithms such as baby-step giant-step, Pollard's rho, Pohlig--Hellman and the index calculus method. This textbook is suitable for advanced undergraduate and graduate students of computer science, engineering and mathematics, satisfying the requirements of various types of courses: a basic introductory course; a theoretically oriented course whose focus is on the precise definition of security concepts and on cryptographic schemes with reductionist security proofs; a practice-oriented course requiring little mathematical background and with an emphasis on applications; or a mathematically advanced course addressed to students with a stronger mathematical background. The main prerequisite is a basic knowledge of linear algebra and elementary calculus, and while some knowledge of probability and abstract algebra would be helpful, it is not essential because the book includes the necessary background from these subjects and, furthermore, explores the number-theoretic material in detail. The book is also a comprehensive reference and is suitable for self-study by practitioners and programmers.

Algebraic Aspects of Cryptography

Author: Neal Koblitz

Publisher: Springer Science & Business Media

ISBN: 3662036428

Category: Computers

Page: 206

View: 8303

DOWNLOAD NOW »
From the reviews: "This is a textbook in cryptography with emphasis on algebraic methods. It is supported by many exercises (with answers) making it appropriate for a course in mathematics or computer science. [...] Overall, this is an excellent expository text, and will be very useful to both the student and researcher." Mathematical Reviews

Mathematical Ciphers

From Caesar to RSA

Author: Anne L. Young

Publisher: American Mathematical Soc.

ISBN: 0821837303

Category: Mathematics

Page: 159

View: 2419

DOWNLOAD NOW »
A cipher is a scheme for creating coded messages for the secure exchange of information. Throughout history, many different coding schemes have been devised. One of the oldest and simplest mathematical systems was used by Julius Caesar. This is where Mathematical Ciphers begins. Building on that simple system, Young moves on to more complicated schemes, ultimately ending with the RSA cipher, which is used to provide security for the Internet. This book is structured differently from most mathematics texts. It does not begin with a mathematical topic, but rather with a cipher. The mathematics is developed as it is needed; the applications motivate the mathematics. As is typical in mathematics textbooks, most chapters end with exercises. Many of these problems are similar to solved examples and are designed to assist the reader in mastering the basic material. A few of the exercises are one-of-a-kind, intended to challenge the interested reader. Implementing encryption schemes is considerably easier with the use of the computer. For all the ciphers introduced in this book, JavaScript programs are available from the Web. In addition to developing various encryption schemes, this book also introduces the reader to number theory. Here, the study of integers and their properties is placed in the exciting and modern context of cryptology. Mathematical Ciphers can be used as a textbook for an introductory course in mathematics for all majors. The only prerequisite is high school mathematics.

The Mathematics of Ciphers

Number Theory and RSA Cryptography

Author: S.C. Coutinho

Publisher: A K Peters, Ltd.

ISBN: 9781568810829

Category: Mathematics

Page: 196

View: 7618

DOWNLOAD NOW »
This book is an introduction to the algorithmic aspects of number theory and its applications to cryptography, with special emphasis on the RSA cryptosys-tem. It covers many of the familiar topics of elementary number theory, all with an algorithmic twist. The text also includes many interesting historical notes.

Algorithmic Number Theory

4th International Symposium, ANTS-IV Leiden, The Netherlands, July 2-7, 2000 Proceedings

Author: Wieb Bosma

Publisher: Springer Science & Business Media

ISBN: 3540676953

Category: Computers

Page: 613

View: 5226

DOWNLOAD NOW »
This book constitutes the refereed proceedings of the 4th International Algorithmic Number Theory Symposium, ANTS-IV, held in Leiden, The Netherlands, in July 2000. The book presents 36 contributed papers which have gone through a thorough round of reviewing, selection and revision. Also included are 4 invited survey papers. Among the topics addressed are gcd algorithms, primality, factoring, sieve methods, cryptography, linear algebra, lattices, algebraic number fields, class groups and fields, elliptic curves, polynomials, function fields, and power sums.