Cryptanalysis of Number Theoretic Ciphers

Author: Samuel S. Wagstaff, Jr.

Publisher: CRC Press

ISBN: 9781584881537

Category: Mathematics

Page: 336

View: 8906

DOWNLOAD NOW »
At the heart of modern cryptographic algorithms lies computational number theory. Whether you're encrypting or decrypting ciphers, a solid background in number theory is essential for success. Written by a number theorist and practicing cryptographer, Cryptanalysis of Number Theoretic Ciphers takes you from basic number theory to the inner workings of ciphers and protocols. First, the book provides the mathematical background needed in cryptography as well as definitions and simple examples from cryptography. It includes summaries of elementary number theory and group theory, as well as common methods of finding or constructing large random primes, factoring large integers, and computing discrete logarithms. Next, it describes a selection of cryptographic algorithms, most of which use number theory. Finally, the book presents methods of attack on the cryptographic algorithms and assesses their effectiveness. For each attack method the author lists the systems it applies to and tells how they may be broken with it. Computational number theorists are some of the most successful cryptanalysts against public key systems. Cryptanalysis of Number Theoretic Ciphers builds a solid foundation in number theory and shows you how to apply it not only when breaking ciphers, but also when designing ones that are difficult to break.

Elliptic Curves

Number Theory and Cryptography, Second Edition

Author: Lawrence C. Washington

Publisher: CRC Press

ISBN: 9781420071474

Category: Mathematics

Page: 536

View: 6202

DOWNLOAD NOW »
Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and applications of elliptic curves. New to the Second Edition Chapters on isogenies and hyperelliptic curves A discussion of alternative coordinate systems, such as projective, Jacobian, and Edwards coordinates, along with related computational issues A more complete treatment of the Weil and Tate–Lichtenbaum pairings Doud’s analytic method for computing torsion on elliptic curves over Q An explanation of how to perform calculations with elliptic curves in several popular computer algebra systems Taking a basic approach to elliptic curves, this accessible book prepares readers to tackle more advanced problems in the field. It introduces elliptic curves over finite fields early in the text, before moving on to interesting applications, such as cryptography, factoring, and primality testing. The book also discusses the use of elliptic curves in Fermat’s Last Theorem. Relevant abstract algebra material on group theory and fields can be found in the appendices.

Computational Number Theory and Modern Cryptography

Author: Song Y. Yan

Publisher: John Wiley & Sons

ISBN: 1118188616

Category: Computers

Page: 432

View: 9968

DOWNLOAD NOW »
The only book to provide a unified view of the interplay between computational number theory and cryptography Computational number theory and modern cryptography are two of the most important and fundamental research fields in information security. In this book, Song Y. Yang combines knowledge of these two critical fields, providing a unified view of the relationships between computational number theory and cryptography. The author takes an innovative approach, presenting mathematical ideas first, thereupon treating cryptography as an immediate application of the mathematical concepts. The book also presents topics from number theory, which are relevant for applications in public-key cryptography, as well as modern topics, such as coding and lattice based cryptography for post-quantum cryptography. The author further covers the current research and applications for common cryptographic algorithms, describing the mathematical problems behind these applications in a manner accessible to computer scientists and engineers. Makes mathematical problems accessible to computer scientists and engineers by showing their immediate application Presents topics from number theory relevant for public-key cryptography applications Covers modern topics such as coding and lattice based cryptography for post-quantum cryptography Starts with the basics, then goes into applications and areas of active research Geared at a global audience; classroom tested in North America, Europe, and Asia Incudes exercises in every chapter Instructor resources available on the book’s Companion Website Computational Number Theory and Modern Cryptography is ideal for graduate and advanced undergraduate students in computer science, communications engineering, cryptography and mathematics. Computer scientists, practicing cryptographers, and other professionals involved in various security schemes will also find this book to be a helpful reference.

Computational Number Theory

Author: Abhijit Das

Publisher: CRC Press

ISBN: 1482205823

Category: Computers

Page: 614

View: 8600

DOWNLOAD NOW »
Developed from the author’s popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and practitioners of cryptography in industry. Requiring no prior experience with number theory or sophisticated algebraic tools, the book covers many computational aspects of number theory and highlights important and interesting engineering applications. It first builds the foundation of computational number theory by covering the arithmetic of integers and polynomials at a very basic level. It then discusses elliptic curves, primality testing, algorithms for integer factorization, computing discrete logarithms, and methods for sparse linear systems. The text also shows how number-theoretic tools are used in cryptography and cryptanalysis. A dedicated chapter on the application of number theory in public-key cryptography incorporates recent developments in pairing-based cryptography. With an emphasis on implementation issues, the book uses the freely available number-theory calculator GP/PARI to demonstrate complex arithmetic computations. The text includes numerous examples and exercises throughout and omits lengthy proofs, making the material accessible to students and practitioners.

Primality Testing and Integer Factorization in Public-Key Cryptography

Author: Song Y. Yan

Publisher: Springer Science & Business Media

ISBN: 1475738161

Category: Computers

Page: 237

View: 7507

DOWNLOAD NOW »
Primality Testing and Integer Factorization in Public-Key Cryptography introduces various algorithms for primality testing and integer factorization, with their applications in public-key cryptography and information security. More specifically, this book explores basic concepts and results in number theory in Chapter 1. Chapter 2 discusses various algorithms for primality testing and prime number generation, with an emphasis on the Miller-Rabin probabilistic test, the Goldwasser-Kilian and Atkin-Morain elliptic curve tests, and the Agrawal-Kayal-Saxena deterministic test for primality. Chapter 3 introduces various algorithms, particularly the Elliptic Curve Method (ECM), the Quadratic Sieve (QS) and the Number Field Sieve (NFS) for integer factorization. This chapter also discusses some other computational problems that are related to factoring, such as the square root problem, the discrete logarithm problem and the quadratic residuosity problem.

Public-Key Cryptography and Computational Number Theory

Proceedings of the International Conference organized by the Stefan Banach International Mathematical Center Warsaw, Poland, September 11-15, 2000

Author: Kazimierz Alster,Jerzy Urbanowicz,Hugh C. Williams

Publisher: Walter de Gruyter

ISBN: 3110881039

Category: Mathematics

Page: 343

View: 4591

DOWNLOAD NOW »
The Proceedings contain twenty selected, refereed contributions arising from the International Conference on Public-Key Cryptography and Computational Number Theory held in Warsaw, Poland, on September 11-15, 2000. The conference, attended by eightyfive mathematicians from eleven countries, was organized by the Stefan Banach International Mathematical Center. This volume contains articles from leading experts in the world on cryptography and computational number theory, providing an account of the state of research in a wide variety of topics related to the conference theme. It is dedicated to the memory of the Polish mathematicians Marian Rejewski (1905-1980), Jerzy Róøycki (1909-1942) and Henryk Zygalski (1907-1978), who deciphered the military version of the famous Enigma in December 1932 – January 1933. A noteworthy feature of the volume is a foreword written by Andrew Odlyzko on the progress in cryptography from Enigma time until now.

Cryptanalytic Attacks on RSA

Author: Song Y. Yan

Publisher: Springer Science & Business Media

ISBN: 0387487425

Category: Computers

Page: 255

View: 5400

DOWNLOAD NOW »
RSA is a public-key cryptographic system, and is the most famous and widely-used cryptographic system in today's digital world. Cryptanalytic Attacks on RSA, a professional book, covers almost all known cryptanalytic attacks and defenses of the RSA cryptographic system and its variants. Since RSA depends heavily on computational complexity theory and number theory, background information on complexity theory and number theory is presented first, followed by an account of the RSA cryptographic system and its variants. This book is also suitable as a secondary text for advanced-level students in computer science and mathematics.

Modern Cryptanalysis

Techniques for Advanced Code Breaking

Author: Christopher Swenson

Publisher: John Wiley & Sons

ISBN: 1118428625

Category: Computers

Page: 264

View: 8628

DOWNLOAD NOW »
As an instructor at the University of Tulsa, Christopher Swenson could find no relevant text for teaching modern cryptanalysis?so he wrote his own. This is the first book that brings the study of cryptanalysis into the 21st century. Swenson provides a foundation in traditional cryptanalysis, examines ciphers based on number theory, explores block ciphers, and teaches the basis of all modern cryptanalysis: linear and differential cryptanalysis. This time-honored weapon of warfare has become a key piece of artillery in the battle for information security.

Introduction to Cryptography with Maple

Author: José Luis Gómez Pardo

Publisher: Springer Science & Business Media

ISBN: 3642321666

Category: Computers

Page: 706

View: 934

DOWNLOAD NOW »
This introduction to cryptography employs a programming-oriented approach to study the most important cryptographic schemes in current use and the main cryptanalytic attacks against them. Discussion of the theoretical aspects, emphasizing precise security definitions based on methodological tools such as complexity and randomness, and of the mathematical aspects, with emphasis on number-theoretic algorithms and their applications to cryptography and cryptanalysis, is integrated with the programming approach, thus providing implementations of the algorithms and schemes as well as examples of realistic size. A distinctive feature of the author's approach is the use of Maple as a programming environment in which not just the cryptographic primitives but also the most important cryptographic schemes are implemented following the recommendations of standards bodies such as NIST, with many of the known cryptanalytic attacks implemented as well. The purpose of the Maple implementations is to let the reader experiment and learn, and for this reason the author includes numerous examples. The book discusses important recent subjects such as homomorphic encryption, identity-based cryptography and elliptic curve cryptography. The algorithms and schemes which are treated in detail and implemented in Maple include AES and modes of operation, CMAC, GCM/GMAC, SHA-256, HMAC, RSA, Rabin, Elgamal, Paillier, Cocks IBE, DSA and ECDSA. In addition, some recently introduced schemes enjoying strong security properties, such as RSA-OAEP, Rabin-SAEP, Cramer--Shoup, and PSS, are also discussed and implemented. On the cryptanalysis side, Maple implementations and examples are used to discuss many important algorithms, including birthday and man-in-the-middle attacks, integer factorization algorithms such as Pollard's rho and the quadratic sieve, and discrete log algorithms such as baby-step giant-step, Pollard's rho, Pohlig--Hellman and the index calculus method. This textbook is suitable for advanced undergraduate and graduate students of computer science, engineering and mathematics, satisfying the requirements of various types of courses: a basic introductory course; a theoretically oriented course whose focus is on the precise definition of security concepts and on cryptographic schemes with reductionist security proofs; a practice-oriented course requiring little mathematical background and with an emphasis on applications; or a mathematically advanced course addressed to students with a stronger mathematical background. The main prerequisite is a basic knowledge of linear algebra and elementary calculus, and while some knowledge of probability and abstract algebra would be helpful, it is not essential because the book includes the necessary background from these subjects and, furthermore, explores the number-theoretic material in detail. The book is also a comprehensive reference and is suitable for self-study by practitioners and programmers.

Mathematical Foundations of Public Key Cryptography

Author: Xiaoyun Wang,Guangwu Xu,Mingqiang Wang,Xianmeng Meng

Publisher: CRC Press

ISBN: 1498702244

Category: Computers

Page: 220

View: 1843

DOWNLOAD NOW »
In Mathematical Foundations of Public Key Cryptography, the authors integrate the results of more than 20 years of research and teaching experience to help students bridge the gap between math theory and crypto practice. The book provides a theoretical structure of fundamental number theory and algebra knowledge supporting public-key cryptography. Rather than simply combining number theory and modern algebra, this textbook features the interdisciplinary characteristics of cryptography—revealing the integrations of mathematical theories and public-key cryptographic applications. Incorporating the complexity theory of algorithms throughout, it introduces the basic number theoretic and algebraic algorithms and their complexities to provide a preliminary understanding of the applications of mathematical theories in cryptographic algorithms. Supplying a seamless integration of cryptography and mathematics, the book includes coverage of elementary number theory; algebraic structure and attributes of group, ring, and field; cryptography-related computing complexity and basic algorithms, as well as lattice and fundamental methods of lattice cryptanalysis. The text consists of 11 chapters. Basic theory and tools of elementary number theory, such as congruences, primitive roots, residue classes, and continued fractions, are covered in Chapters 1-6. The basic concepts of abstract algebra are introduced in Chapters 7-9, where three basic algebraic structures of groups, rings, and fields and their properties are explained. Chapter 10 is about computational complexities of several related mathematical algorithms, and hard problems such as integer factorization and discrete logarithm. Chapter 11 presents the basics of lattice theory and the lattice basis reduction algorithm—the LLL algorithm and its application in the cryptanalysis of the RSA algorithm. Containing a number of exercises on key algorithms, the book is suitable for use as a textbook for undergraduate students and first-year graduate students in information security programs. It is also an ideal reference book for cryptography professionals looking to master public-key cryptography.

Number Theory and Cryptography

Author: J. H. Loxton

Publisher: Cambridge University Press

ISBN: 0521398770

Category: Mathematics

Page: 235

View: 488

DOWNLOAD NOW »
Papers presented by prominent contributors at a workshop on Number Theory and Cryptography, and the annual meeting of the Australian Mathematical Society.

Algebraic Aspects of Cryptography

Author: Neal Koblitz

Publisher: Springer Science & Business Media

ISBN: 3662036428

Category: Computers

Page: 206

View: 3480

DOWNLOAD NOW »
From the reviews: "This is a textbook in cryptography with emphasis on algebraic methods. It is supported by many exercises (with answers) making it appropriate for a course in mathematics or computer science. [...] Overall, this is an excellent expository text, and will be very useful to both the student and researcher." Mathematical Reviews

An Introduction to Cryptography, Second Edition

Author: Richard A. Mollin

Publisher: CRC Press

ISBN: 1420011243

Category: Mathematics

Page: 413

View: 9958

DOWNLOAD NOW »
Continuing a bestselling tradition, An Introduction to Cryptography, Second Edition provides a solid foundation in cryptographic concepts that features all of the requisite background material on number theory and algorithmic complexity as well as a historical look at the field. With numerous additions and restructured material, this edition presents the ideas behind cryptography and the applications of the subject. The first chapter provides a thorough treatment of the mathematics necessary to understand cryptography, including number theory and complexity, while the second chapter discusses cryptographic fundamentals, such as ciphers, linear feedback shift registers, modes of operation, and attacks. The next several chapters discuss DES, AES, public-key cryptography, primality testing, and various factoring methods, from classical to elliptical curves. The final chapters are comprised of issues pertaining to the Internet, such as pretty good privacy (PGP), protocol layers, firewalls, and cookies, as well as applications, including login and network security, viruses, smart cards, and biometrics. The book concludes with appendices on mathematical data, computer arithmetic, the Rijndael S-Box, knapsack ciphers, the Silver-Pohlig-Hellman algorithm, the SHA-1 algorithm, radix-64 encoding, and quantum cryptography. New to the Second Edition: An introductory chapter that provides more information on mathematical facts and complexity theory Expanded and updated exercises sets, including some routine exercises More information on primality testing and cryptanalysis Accessible and logically organized, An Introduction to Cryptography, Second Edition is the essential book on the fundamentals of cryptography.

Non-commutative Cryptography and Complexity of Group-theoretic Problems

Author: Alexei G. Myasnikov,Vladimir Shpilrain,Alexander Ushakov

Publisher: American Mathematical Soc.

ISBN: 0821853600

Category: Mathematics

Page: 385

View: 8351

DOWNLOAD NOW »
This book is about relations between three different areas of mathematics and theoretical computer science: combinatorial group theory, cryptography, and complexity theory. It explores how non-commutative (infinite) groups, which are typically studied in combinatorial group theory, can be used in public key cryptography. It also shows that there is remarkable feedback from cryptography to combinatorial group theory because some of the problems motivated by cryptography appear to be new to group theory, and they open many interesting research avenues within group theory. In particular, a lot of emphasis in the book is put on studying search problems, as compared to decision problems traditionally studied in combinatorial group theory. Then, complexity theory, notably generic-case complexity of algorithms, is employed for cryptanalysis of various cryptographic protocols based on infinite groups, and the ideas and machinery from the theory of generic-case complexity are used to study asymptotically dominant properties of some infinite groups that have been applied in public key cryptography so far. This book also describes new interesting developments in the algorithmic theory of solvable groups and another spectacular new development related to complexity of group-theoretic problems, which is based on the ideas of compressed words and straight-line programs coming from computer science.

Kryptografie verständlich

Ein Lehrbuch für Studierende und Anwender

Author: Christof Paar,Jan Pelzl

Publisher: Springer-Verlag

ISBN: 3662492970

Category: Computers

Page: 416

View: 7516

DOWNLOAD NOW »
Das Buch gibt eine umfassende Einführung in moderne angewandte Kryptografie. Es behandelt nahezu alle kryptografischen Verfahren mit praktischer Relevanz. Es werden symmetrische Verfahren (DES, AES, PRESENT, Stromchiffren), asymmetrische Verfahren (RSA, Diffie-Hellmann, elliptische Kurven) sowie digitale Signaturen, Hash-Funktionen, Message Authentication Codes sowie Schlüsselaustauschprotokolle vorgestellt. Für alle Krypto-Verfahren werden aktuelle Sicherheitseinschätzungen und Implementierungseigenschaften beschrieben.

Algorithmic Number Theory

4th International Symposium, ANTS-IV Leiden, The Netherlands, July 2-7, 2000 Proceedings

Author: Wieb Bosma

Publisher: Springer Science & Business Media

ISBN: 3540676953

Category: Computers

Page: 613

View: 7500

DOWNLOAD NOW »
This book constitutes the refereed proceedings of the 4th International Algorithmic Number Theory Symposium, ANTS-IV, held in Leiden, The Netherlands, in July 2000. The book presents 36 contributed papers which have gone through a thorough round of reviewing, selection and revision. Also included are 4 invited survey papers. Among the topics addressed are gcd algorithms, primality, factoring, sieve methods, cryptography, linear algebra, lattices, algebraic number fields, class groups and fields, elliptic curves, polynomials, function fields, and power sums.