R for Data Science

Import, Tidy, Transform, Visualize, and Model Data

Author: Hadley Wickham,Garrett Grolemund

Publisher: "O'Reilly Media, Inc."

ISBN: 1491910364

Category: Computers

Page: 520

View: 6248

DOWNLOAD NOW »
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Mastering Data Analysis with R

Author: Gergely Daroczi

Publisher: Packt Publishing Ltd

ISBN: 1783982039

Category: Computers

Page: 396

View: 6857

DOWNLOAD NOW »
Gain sharp insights into your data and solve real-world data science problems with R—from data munging to modeling and visualization About This Book Handle your data with precision and care for optimal business intelligence Restructure and transform your data to inform decision-making Packed with practical advice and tips to help you get to grips with data mining Who This Book Is For If you are a data scientist or R developer who wants to explore and optimize your use of R's advanced features and tools, this is the book for you. A basic knowledge of R is required, along with an understanding of database logic. What You Will Learn Connect to and load data from R's range of powerful databases Successfully fetch and parse structured and unstructured data Transform and restructure your data with efficient R packages Define and build complex statistical models with glm Develop and train machine learning algorithms Visualize social networks and graph data Deploy supervised and unsupervised classification algorithms Discover how to visualize spatial data with R In Detail R is an essential language for sharp and successful data analysis. Its numerous features and ease of use make it a powerful way of mining, managing, and interpreting large sets of data. In a world where understanding big data has become key, by mastering R you will be able to deal with your data effectively and efficiently. This book will give you the guidance you need to build and develop your knowledge and expertise. Bridging the gap between theory and practice, this book will help you to understand and use data for a competitive advantage. Beginning with taking you through essential data mining and management tasks such as munging, fetching, cleaning, and restructuring, the book then explores different model designs and the core components of effective analysis. You will then discover how to optimize your use of machine learning algorithms for classification and recommendation systems beside the traditional and more recent statistical methods. Style and approach Covering the essential tasks and skills within data science, Mastering Data Analysis provides you with solutions to the challenges of data science. Each section gives you a theoretical overview before demonstrating how to put the theory to work with real-world use cases and hands-on examples.

Big Data Analytics with R

Author: Simon Walkowiak

Publisher: Packt Publishing Ltd

ISBN: 1786463725

Category: Computers

Page: 506

View: 7629

DOWNLOAD NOW »
Utilize R to uncover hidden patterns in your Big Data About This Book Perform computational analyses on Big Data to generate meaningful results Get a practical knowledge of R programming language while working on Big Data platforms like Hadoop, Spark, H2O and SQL/NoSQL databases, Explore fast, streaming, and scalable data analysis with the most cutting-edge technologies in the market Who This Book Is For This book is intended for Data Analysts, Scientists, Data Engineers, Statisticians, Researchers, who want to integrate R with their current or future Big Data workflows. It is assumed that readers have some experience in data analysis and understanding of data management and algorithmic processing of large quantities of data, however they may lack specific skills related to R. What You Will Learn Learn about current state of Big Data processing using R programming language and its powerful statistical capabilities Deploy Big Data analytics platforms with selected Big Data tools supported by R in a cost-effective and time-saving manner Apply the R language to real-world Big Data problems on a multi-node Hadoop cluster, e.g. electricity consumption across various socio-demographic indicators and bike share scheme usage Explore the compatibility of R with Hadoop, Spark, SQL and NoSQL databases, and H2O platform In Detail Big Data analytics is the process of examining large and complex data sets that often exceed the computational capabilities. R is a leading programming language of data science, consisting of powerful functions to tackle all problems related to Big Data processing. The book will begin with a brief introduction to the Big Data world and its current industry standards. With introduction to the R language and presenting its development, structure, applications in real world, and its shortcomings. Book will progress towards revision of major R functions for data management and transformations. Readers will be introduce to Cloud based Big Data solutions (e.g. Amazon EC2 instances and Amazon RDS, Microsoft Azure and its HDInsight clusters) and also provide guidance on R connectivity with relational and non-relational databases such as MongoDB and HBase etc. It will further expand to include Big Data tools such as Apache Hadoop ecosystem, HDFS and MapReduce frameworks. Also other R compatible tools such as Apache Spark, its machine learning library Spark MLlib, as well as H2O. Style and approach This book will serve as a practical guide to tackling Big Data problems using R programming language and its statistical environment. Each section of the book will present you with concise and easy-to-follow steps on how to process, transform and analyse large data sets.

Graphical Data Analysis with R

Author: Antony Unwin

Publisher: CRC Press

ISBN: 1498786774

Category: Mathematics

Page: 310

View: 3120

DOWNLOAD NOW »
See How Graphics Reveal Information Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA. Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.

Graphics for Statistics and Data Analysis with R

Author: Kevin J. Keen

Publisher: CRC Press

ISBN: 0429632215

Category: Mathematics

Page: 590

View: 8006

DOWNLOAD NOW »
Praise for the First Edition "The main strength of this book is that it provides a unified framework of graphical tools for data analysis, especially for univariate and low-dimensional multivariate data. In addition, it is clearly written in plain language and the inclusion of R code is particularly useful to assist readers’ understanding of the graphical techniques discussed in the book. ... It not only summarises graphical techniques, but it also serves as a practical reference for researchers and graduate students with an interest in data display." -Han Lin Shang,?Journal of Applied Statistics Graphics for Statistics and Data Analysis with R, Second Edition, presents the basic principles of graphical design and applies these principles to engaging examples using the graphics and lattice packages in R. It offers a wide array of modern graphical displays for data visualization and representation. Added in the second edition are coverage of the ggplot2 graphics package, material on human visualization and color rendering in R, on screen, and in print. Features Emphasizes the fundamentals of statistical graphics and best practice guidelines for producing and choosing among graphical displays in R Presents technical details on topics such as: the estimation of quantiles, nonparametric and parametric density estimation; diagnostic plots for the simple linear regression model; polynomial regression, splines, and locally weighted polynomial regression for producing a smooth curve; Trellis graphics for multivariate data Provides downloadable R code and data for figures at www.graphicsforstatistics.com Kevin J. Keen is a Professor of Mathematics and Statistics at the University of Northern British Columbia (Prince George, Canada) and an Accredited Professional StatisticianTM by the Statistical Society of Canada and the American Statistical Association.

Data Analysis with R

Author: Tony Fischetti

Publisher: Packt Publishing Ltd

ISBN: 1785286447

Category: Computers

Page: 388

View: 355

DOWNLOAD NOW »
Load, wrangle, and analyze your data using the world's most powerful statistical programming language About This Book Load, manipulate and analyze data from different sources Gain a deeper understanding of fundamentals of applied statistics A practical guide to performing data analysis in practice Who This Book Is For Whether you are learning data analysis for the first time, or you want to deepen the understanding you already have, this book will prove to an invaluable resource. If you are looking for a book to bring you all the way through the fundamentals to the application of advanced and effective analytics methodologies, and have some prior programming experience and a mathematical background, then this is for you. What You Will Learn Navigate the R environment Describe and visualize the behavior of data and relationships between data Gain a thorough understanding of statistical reasoning and sampling Employ hypothesis tests to draw inferences from your data Learn Bayesian methods for estimating parameters Perform regression to predict continuous variables Apply powerful classification methods to predict categorical data Handle missing data gracefully using multiple imputation Identify and manage problematic data points Employ parallelization and Rcpp to scale your analyses to larger data Put best practices into effect to make your job easier and facilitate reproducibility In Detail Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. With over 7,000 user contributed packages, it's easy to find support for the latest and greatest algorithms and techniques. Starting with the basics of R and statistical reasoning, Data Analysis with R dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with “messy data”, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone's career as a data analyst. Style and approach Learn data analysis using engaging examples and fun exercises, and with a gentle and friendly but comprehensive "learn-by-doing" approach.

Data Analysis with R, Second Edition

A comprehensive guide to manipulating, analyzing, and visualizing data in R, 2nd Edition

Author: Anthony Fischetti

Publisher: Packt Publishing Ltd

ISBN: 1788397339

Category: Computers

Page: 570

View: 4240

DOWNLOAD NOW »
Learn, by example, the fundamentals of data analysis as well as several intermediate to advanced methods and techniques ranging from classification and regression to Bayesian methods and MCMC, which can be put to immediate use. Key Features Analyze your data using R – the most powerful statistical programming language Learn how to implement applied statistics using practical use-cases Use popular R packages to work with unstructured and structured data Book Description Frequently the tool of choice for academics, R has spread deep into the private sector and can be found in the production pipelines at some of the most advanced and successful enterprises. The power and domain-specificity of R allows the user to express complex analytics easily, quickly, and succinctly. Starting with the basics of R and statistical reasoning, this book dives into advanced predictive analytics, showing how to apply those techniques to real-world data though with real-world examples. Packed with engaging problems and exercises, this book begins with a review of R and its syntax with packages like Rcpp, ggplot2, and dplyr. From there, get to grips with the fundamentals of applied statistics and build on this knowledge to perform sophisticated and powerful analytics. Solve the difficulties relating to performing data analysis in practice and find solutions to working with messy data, large data, communicating results, and facilitating reproducibility. This book is engineered to be an invaluable resource through many stages of anyone’s career as a data analyst. What you will learn Gain a thorough understanding of statistical reasoning and sampling theory Employ hypothesis testing to draw inferences from your data Learn Bayesian methods for estimating parameters Train regression, classification, and time series models Handle missing data gracefully using multiple imputation Identify and manage problematic data points Learn how to scale your analyses to larger data with Rcpp, data.table, dplyr, and parallelization Put best practices into effect to make your job easier and facilitate reproducibility Who this book is for Budding data scientists and data analysts who are new to the concept of data analysis, or who want to build efficient analytical models in R will find this book to be useful. No prior exposure to data analysis is needed, although a fundamental understanding of the R programming language is required to get the best out of this book.

Data Analytics with R

A Hands-On Approach

Author: Viswa Viswanathan

Publisher: N.A

ISBN: 9781941773024

Category:

Page: 422

View: 6940

DOWNLOAD NOW »
Today we all have access to a lot of data. Even more crucially, we also have easy access, through our personal computers and powerful free software packages, to the means to process the corpus of data and extract intelligence from it. Quite needlessly though, the necessary knowledge skills remain the exclusive preserve of a few, which this book sets out to change. Although most data analytics techniques have a mathematical basis, people with a grasp of high school mathematics can gain a deep intuitive understanding of the underlying techniques and apply them correctly and effectively. To make this possible, the book: Focuses on intuitive explanations with examples, while avoiding deep mathematics; Provides numerous examples, tables and figures (over 200 figures and 110 tables), to help readers grasp the concepts and techniques; Introduces the R statistical programming environment and provides step-by-step guidance to learn R and apply it to the techniques covered; After working through the book readers will be able to independently apply the techniques covered on their own data. After completing the book, readers would have mastered an important subset of the R language. Recognizing that people master new topics only by doing, the book provides many instructive labs, -lab assignments and review questions with detailed guidance and explanations. Rather than just providing the steps in the form of "what" to do, the book also explains "why?" All the data files needed to work through the labs and lab assignments are available as free downloads from the book's web site. To shield those who are new to any form of computer programming, the book comes with many convenience functions that can serve to automate what might otherwise be confusing procedures. The book covers the following topics: Quick introduction to R programming -- assumes no prior background in R; Important data analytics concepts; Exploratory data analysis and graphing with R; Affinity analysis; Classification techniques like K nearest neighbors, Naive Bayes and Classification trees; Regression techniques like simple and multiple linear regression; K nearest neighbors for regression and regression trees; Time series analysis; and Data reduction techniques like Principal Component analysis (PCA) and cluster analysis (k-means clustering) After completing the book, readers would have had a huge amount of hands-on experience, with a great intuitive understanding of the underlying theory.

Behavioral Research Data Analysis with R

Author: Yuelin Li,Jonathan Baron

Publisher: Springer Science & Business Media

ISBN: 9781461412380

Category: Social Science

Page: 245

View: 9203

DOWNLOAD NOW »
This book is written for behavioral scientists who want to consider adding R to their existing set of statistical tools, or want to switch to R as their main computation tool. The authors aim primarily to help practitioners of behavioral research make the transition to R. The focus is to provide practical advice on some of the widely-used statistical methods in behavioral research, using a set of notes and annotated examples. The book will also help beginners learn more about statistics and behavioral research. These are statistical techniques used by psychologists who do research on human subjects, but of course they are also relevant to researchers in others fields that do similar kinds of research. The authors emphasize practical data analytic skills so that they can be quickly incorporated into readers’ own research.

Functional Data Analysis with R and MATLAB

Author: James Ramsay,Giles Hooker,Spencer Graves

Publisher: Springer Science & Business Media

ISBN: 0387981853

Category: Computers

Page: 202

View: 6869

DOWNLOAD NOW »
The book provides an application-oriented overview of functional analysis, with extended and accessible presentations of key concepts such as spline basis functions, data smoothing, curve registration, functional linear models and dynamic systems Functional data analysis is put to work in a wide a range of applications, so that new problems are likely to find close analogues in this book The code in R and Matlab in the book has been designed to permit easy modification to adapt to new data structures and research problems

Introduction to Data Analysis with R for Forensic Scientists

Author: James Michael Curran

Publisher: CRC Press

ISBN: 9781420088274

Category: Law

Page: 331

View: 8939

DOWNLOAD NOW »
Statistical methods provide a logical, coherent framework in which data from experimental science can be analyzed. However, many researchers lack the statistical skills or resources that would allow them to explore their data to its full potential. Introduction to Data Analysis with R for Forensic Sciences minimizes theory and mathematics and focuses on the application and practice of statistics to provide researchers with the dexterity necessary to systematically analyze data discovered from the fruits of their research. Using traditional techniques and employing examples and tutorials with real data collected from experiments, this book presents the following critical information necessary for researchers: A refresher on basic statistics and an introduction to R Considerations and techniques for the visual display of data through graphics An overview of statistical hypothesis tests and the reasoning behind them A comprehensive guide to the use of the linear model, the foundation of most statistics encountered An introduction to extensions to the linear model for commonly encountered scenarios, including logistic and Poisson regression Instruction on how to plan and design experiments in a way that minimizes cost and maximizes the chances of finding differences that may exist Focusing on forensic examples but useful for anyone working in a laboratory, this volume enables researchers to get the most out of their experiments by allowing them to cogently analyze the data they have collected, saving valuable time and effort.

Applied Spatial Data Analysis with R

Author: Roger S. Bivand,Edzer Pebesma,Virgilio Gómez-Rubio

Publisher: Springer Science & Business Media

ISBN: 1461476186

Category: Medical

Page: 405

View: 6140

DOWNLOAD NOW »
Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.

Statistical Analysis with R

Author: John M. Quick

Publisher: Packt Publishing Ltd

ISBN: 1849512094

Category: Computers

Page: 300

View: 5312

DOWNLOAD NOW »
Take control of your data and produce superior statistical analysis with R.

Discrete Data Analysis with R

Visualization and Modeling Techniques for Categorical and Count Data

Author: Michael Friendly,David Meyer

Publisher: CRC Press

ISBN: 1498725856

Category: Mathematics

Page: 544

View: 9602

DOWNLOAD NOW »
An Applied Treatment of Modern Graphical Methods for Analyzing Categorical Data Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical methods for exploring data, spotting unusual features, visualizing fitted models, and presenting results. The book is designed for advanced undergraduate and graduate students in the social and health sciences, epidemiology, economics, business, statistics, and biostatistics as well as researchers, methodologists, and consultants who can use the methods with their own data and analyses. Along with describing the necessary statistical theory, the authors illustrate the practical application of the techniques to a large number of substantive problems, including how to organize data, conduct an analysis, produce informative graphs, and evaluate what the graphs reveal about the data. The first part of the book contains introductory material on graphical methods for discrete data, basic R skills, and methods for fitting and visualizing one-way discrete distributions. The second part focuses on simple, traditional nonparametric tests and exploratory methods for visualizing patterns of association in two-way and larger frequency tables. The final part of the text discusses model-based methods for the analysis of discrete data. Web Resource The data sets and R software used, including the authors’ own vcd and vcdExtra packages, are available at http://cran.r-project.org.

Interactive and Dynamic Graphics for Data Analysis

With R and GGobi

Author: Dianne Cook,Deborah F. Swayne

Publisher: Springer Science & Business Media

ISBN: 0387717625

Category: Mathematics

Page: 188

View: 9600

DOWNLOAD NOW »
This richly illustrated book describes the use of interactive and dynamic graphics as part of multidimensional data analysis. Chapter topics include clustering, supervised classification, and working with missing values. A variety of plots and interaction methods are used in each analysis, often starting with brushing linked low-dimensional views and working up to manual manipulation of tours of several variables. The book is augmented by a wealth of online material.

Graphics for Statistics and Data Analysis with R, Second Edition

Author: Kevin J. Keen

Publisher: Chapman & Hall/CRC

ISBN: 9781498779838

Category: Mathematical statistics

Page: 590

View: 9662

DOWNLOAD NOW »
Praise for the First Edition "The main strength of this book is that it provides a unified framework of graphical tools for data analysis, especially for univariate and low-dimensional multivariate data. In addition, it is clearly written in plain language and the inclusion of R code is particularly useful to assist readers' understanding of the graphical techniques discussed in the book. ... It not only summarises graphical techniques, but it also serves as a practical reference for researchers and graduate students with an interest in data display." -Han Lin Shang, Journal of Applied Statistics Graphics for Statistics and Data Analysis with R, Second Edition, presents the basic principles of graphical design and applies these principles to engaging examples using the graphics and lattice packages in R. It offers a wide array of modern graphical displays for data visualization and representation. Added in the second edition are coverage of the ggplot2 graphics package, material on human visualization and color rendering in R, on screen, and in print. Features Emphasizes the fundamentals of statistical graphics and best practice guidelines for producing and choosing among graphical displays in R Presents technical details on topics such as: the estimation of quantiles, nonparametric and parametric density estimation; diagnostic plots for the simple linear regression model; polynomial regression, splines, and locally weighted polynomial regression for producing a smooth curve; Trellis graphics for multivariate data Provides downloadable R code and data for figures at www.graphicsforstatistics.com Kevin J. Keen is a Professor of Mathematics and Statistics at the University of Northern British Columbia (Prince George, Canada) and an Accredited Professional StatisticianTM by the Statistical Society of Canada and the American Statistical Association.

Data Mining and Business Analytics with R

Author: Johannes Ledolter

Publisher: John Wiley & Sons

ISBN: 1118572157

Category: Computers

Page: 368

View: 6910

DOWNLOAD NOW »
Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: • A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools • Illustrations of how to use the outlined concepts in real-world situations • Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials • Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.

Basic Data Analysis for Time Series with R

Author: DeWayne R. Derryberry

Publisher: John Wiley & Sons

ISBN: 1118593367

Category: Mathematics

Page: 320

View: 8894

DOWNLOAD NOW »
Written at a readily accessible level, Basic Data Analysis for Time Series with R emphasizes the mathematical importance of collaborative analysis of data used to collect increments of time or space. Balancing a theoretical and practical approach to analyzing data within the context of serial correlation, the book presents a coherent and systematic regression-based approach to model selection. The book illustrates these principles of model selection and model building through the use of information criteria, cross validation, hypothesis tests, and confidence intervals. Focusing on frequency- and time-domain and trigonometric regression as the primary themes, the book also includes modern topical coverage on Fourier series and Akaike's Information Criterion (AIC). In addition, Basic Data Analysis for Time Series with R also features: Real-world examples to provide readers with practical hands-on experience Multiple R software subroutines employed with graphical displays Numerous exercise sets intended to support readers understanding of the core concepts Specific chapters devoted to the analysis of the Wolf sunspot number data and the Vostok ice core data sets

The R Book

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 1118448960

Category: Mathematics

Page: 1080

View: 4850

DOWNLOAD NOW »
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)