Differential Dynamical Systems

Author: James D. Meiss

Publisher: SIAM

ISBN: 0898716357

Category: Mathematics

Page: 412

View: 5480

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems conceptsflow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems. Audience This textbook is intended for senior undergraduates and first-year graduate students in pure and applied mathematics, engineering, and the physical sciences. Readers should be comfortable with elementary differential equations and linear algebra and should have had exposure to advanced calculus. Contents List of Figures; Preface; Acknowledgments; Chapter 1: Introduction; Chapter 2: Linear Systems; Chapter 3: Existence and Uniqueness; Chapter 4: Dynamical Systems; Chapter 5: Invariant Manifolds; Chapter 6: The Phase Plane; Chapter 7: Chaotic Dynamics; Chapter 8: Bifurcation Theory; Chapter 9: Hamiltonian Dynamics; Appendix: Mathematical Software; Bibliography; Index

Mathematical Modelling in One Dimension

An Introduction Via Difference and Differential Equations

Author: Jacek Banasiak

Publisher: Cambridge University Press

ISBN: 1107654688

Category: Mathematics

Page: 118

View: 3745

Uses a wide variety of applications to demonstrate the universality of mathematical techniques in describing and analysing natural phenomena.

Computational Mathematical Modeling

An Integrated Approach Across Scales

Author: Daniela Calvetti,Erkki Somersalo

Publisher: SIAM

ISBN: 1611972477

Category: Mathematics

Page: 234

View: 3504

Interesting real-world mathematical modelling problems are complex and can usually be studied at different scales. The scale at which the investigation is carried out is one of the factors that determines the type of mathematics most appropriate to describe the problem. The book concentrates on two modelling paradigms: the macroscopic, in which phenomena are described in terms of time evolution via ordinary differential equations; and the microscopic, which requires knowledge of random events and probability. The exposition is based on this unorthodox combination of deterministic and probabilistic methodologies, and emphasizes the development of computational skills to construct predictive models. To elucidate the concepts, a wealth of examples, self-study problems, and portions of MATLAB code used by the authors are included. This book, which has been extensively tested by the authors for classroom use, is intended for students in mathematics and the physical sciences at the advanced undergraduate level and above.

Monotone Dynamical Systems

An Introduction to the Theory of Competitive and Cooperative Systems

Author: Hal L. Smith

Publisher: American Mathematical Soc.

ISBN: 0821844873

Category: Mathematics

Page: 174

View: 9119

This book presents comprehensive treatment of a rapidly developing area with many potential applications: the theory of monotone dynamical systems and the theory of competitive and cooperative differential equations. The primary aim is to provide potential users of the theory with techniques, results, and ideas useful in applications, while at the same time providing rigorous proofs. Among the topics discussed in the book are continuous-time monotone dynamical systems, and quasimonotone and nonquasimonotone delay differential equations. The book closes with a discussion of applications to quasimonotone systems of reaction-diffusion type. Throughout the book, applications of the theory to many mathematical models arising in biology are discussed. Requiring a background in dynamical systems at the level of a first graduate course, this book is useful to graduate students and researchers working in the theory of dynamical systems and its applications.

Mathematical Modeling of Earth's Dynamical Systems

A Primer

Author: Rudy Slingerland,Lee Kump

Publisher: Princeton University Press

ISBN: 9781400839117

Category: Science

Page: 248

View: 1976

Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html

Mathematical Foundations of Neuroscience

Author: G. Bard Ermentrout,David H. Terman

Publisher: Springer Science & Business Media

ISBN: 0387877088

Category: Mathematics

Page: 422

View: 2714

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics

Theory and Applications

Author: Laécio Carvalho de Barros,Rodney Carlos Bassanezi,Weldon Alexander Lodwick

Publisher: Springer

ISBN: 3662533243

Category: Computers

Page: 299

View: 7133

This book provides an essential introduction to the field of dynamical models. Starting from classical theories such as set theory and probability, it allows readers to draw near to the fuzzy case. On one hand, the book equips readers with a fundamental understanding of the theoretical underpinnings of fuzzy sets and fuzzy dynamical systems. On the other, it demonstrates how these theories are used to solve modeling problems in biomathematics, and presents existing derivatives and integrals applied to the context of fuzzy functions. Each of the major topics is accompanied by examples, worked-out exercises, and exercises to be completed. Moreover, many applications to real problems are presented. The book has been developed on the basis of the authors’ lectures to university students and is accordingly primarily intended as a textbook for both upper-level undergraduates and graduates in applied mathematics, statistics, and engineering. It also offers a valuable resource for practitioners such as mathematical consultants and modelers, and for researchers alike, as it may provide both groups with new ideas and inspirations for projects in the fields of fuzzy logic and biomathematics.

Dynamical Systems in Population Biology

Author: Xiao-Qiang Zhao

Publisher: Springer

ISBN: 3319564331

Category: Mathematics

Page: 406

View: 4260

This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied dynamical systems, nonlinear differential equations, and mathematical biology. He is the author of more than 100 papers, and his research has played an important role in the development of the theory and applications of monotone dynamical systems, periodic and almost periodic semiflows, uniform persistence, and basic reproduction ratios.

Dynamic Models in Biology

Author: Stephen P. Ellner,John Guckenheimer

Publisher: Princeton University Press

ISBN: 1400840961

Category: Science

Page: 352

View: 9158

From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.

Numerical Methods for Nonsmooth Dynamical Systems

Applications in Mechanics and Electronics

Author: Vincent Acary,Bernard Brogliato

Publisher: Springer Science & Business Media

ISBN: 9783540753926

Category: Technology & Engineering

Page: 525

View: 8318

This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.

Applied Mathematical Models in Human Physiology

Author: Johnny T. Ottesen,Mette S. Olufsen,Jesper K. Larsen

Publisher: SIAM

ISBN: 9780898718287

Category: Body fluids

Page: 298

View: 4727

This book introduces mathematicians to real applications from physiology. Using mathematics to analyze physiological systems, the authors focus on models reflecting current research in cardiovascular and pulmonary physiology. In particular, they present models describing blood flow in the heart and the cardiovascular system, as well as the transport of oxygen and carbon dioxide through the respiratory system and a model for baroreceptor regulation.

Dynamical System Models in the Life Sciences and Their Underlying Scientific Issues

Author: Frederic Y M Wan

Publisher: World Scientific Publishing Company

ISBN: 9813143355

Category: Mathematics

Page: 400

View: 9284

Broadly speaking, there are two general approaches to teaching mathematical modeling: 1) the case study approach, and 2) the method based approach (that teaches mathematical techniques with applications to relevant mathematical models). This text emphasizes instead the scientific issues for modeling different phenomena. For the natural or harvested growth of a fish population, we may be interested in the evolution of the population, whether it reaches a steady state (equilibrium or cycle), stable or unstable with respect to a small perturbation from equilibrium, or whether a small change in the environment would cause a catastrophic change, etc. Each scientific issue requires an appropriate model and a different set of mathematical tools to extract information from the model. Models examined are chosen to help explain or justify empirical observations such as cocktail drug treatments are more effective and regenerations after injuries or illness are fast-tracked (compared to original developments). Volume I of this three-volume set limits its scope to phenomena and scientific issues that are modeled by ordinary differential equations (ODE). Scientific issues such as signal and wave propagation, diffusion, and shock formation involving spatial dynamics to be modeled by partial differential equations (PDE) will be treated in Vol. II. Scientific issues involving randomness and uncertainty are examined in Vol. III. Request Inspection Copy Contents: Mathematical Models and the Modeling CycleGrowth of a Population:Evolution and EquilibriumStability and BifurcationInteracting Populations:Linear InteractionsNonlinear Autonomous InteractionsHIV Dynamics and Drug TreatmentsIndex Theory, Bistability and FeedbackOptimization:The Economics of GrowthOptimization over a Planning PeriodModifications of the Basic ProblemBoundary Value Problems are More ComplexConstraints and Control:"Do Your Best" and the Maximum PrincipleChlamydia TrachomatisGenetic Instability and CarcinogenesisMathematical Modeling RevisitedAppendices:First Order ODEBasic Numerical MethodsAssignments Readership: Undergraduates in mathematical biology, mathematical modeling of dynamical systems, optimization and control, viral dynamics (infectious diseases), oncology.

Stochastic Approximation

A Dynamical Systems Viewpoint

Author: Vivek S. Borkar

Publisher: Cambridge University Press

ISBN: 9780521515924

Category: Mathematics

Page: 176

View: 782

This simple, compact toolkit for designing and analyzing stochastic approximation algorithms requires only a basic understanding of probability and differential equations. Although powerful, these algorithms have applications in control and communications engineering, artificial intelligence and economic modeling. Unique topics include finite-time behavior, multiple timescales and asynchronous implementation. There is a useful plethora of applications, each with concrete examples from engineering and economics. Notably it covers variants of stochastic gradient-based optimization schemes, fixed-point solvers, which are commonplace in learning algorithms for approximate dynamic programming, and some models of collective behavior.

Mathematical Modeling in Experimental Nutrition: Vitamins, Proteins, Methods

Author: N.A

Publisher: Academic Press

ISBN: 9780080567853

Category: Technology & Engineering

Page: 362

View: 523

This book developed from a series of conferences to facilitate the application of mathematical modeling to experimental nutrition. As nutrition science moves from prevention of gross deficiencies to identifying requirements for optimum long term health, more sophisticated methods of nutritional assessment will be needed. Collection and evaluation of kinetic data may be one such method. This books opens with chapters giving specific examples of the application of modeling techniques to vitamin A, carotenoids, folate, vitamin b-6, glycogen phosphorylase, transthyretin, amino acids, and energy metabolism. Obtaining kinetic data on internal processes is a major challenge; therefore, the text includes chapters on the use of microdialysis and ultrafiltration, use of membrane vesicles, and culture of mammary tissue. Many of the authors use the Simulation, Analysis and Modeling program which allows compartmental models to be described without specifying the required differential equations. The final sections of the book, however, present some more mathematical descriptions of physiological processes, including bioperiodicity, metabolic control, and membrane transport; discussions of some computational aspects of modeling such as parameter distributions, linear integrators and identifiability; and alternative mathematical approaches such as neural networks and graph theory. Specific, detailed examples of applications of modeling to vitamins, proteins, amino acids, and energy metabolism Novel methods for collecting kinetic data--microdialysis, ultrafiltration, membrane vesicles, and the culture of mammary tissue Mathematical treatment of complex metabolic processes including bioperiodicity, metabolic control, and membrane transport Computational approaches to distribution of kinetic parameters, evaluation of linear integrators, and identifiability Alternative mathematical approaches--neural networks and graph theory Detailed descriptions of the application of modeling to a variety of nutrients