Differential Equations and Their Applications

An Introduction to Applied Mathematics

Author: M. Braun

Publisher: Springer Science & Business Media

ISBN: 1475749694

Category: Mathematics

Page: 719

View: 4292

DOWNLOAD NOW »
For the past several years the Division of Applied Mathematics at Brown University has been teaching an extremely popular sophomore level differential equations course. The immense success of this course is due primarily to two fac tors. First, and foremost, the material is presented in a manner which is rigorous enough for our mathematics and ap plied mathematics majors, but yet intuitive and practical enough for our engineering, biology, economics, physics and geology majors. Secondly, numerous case histories are given of how researchers have used differential equations to solve real life problems. This book is the outgrowth of this course. It is a rigorous treatment of differential equations and their appli cations, and can be understood by anyone who has had a two semester course in Calculus. It contains all the material usually covered in a one or two semester course in differen tial equations. In addition, it possesses the following unique features which distinguish it from other textbooks on differential equations.

Introduction to Applied Mathematics

Author: Gilbert Strang

Publisher: Wellesley-Cambridge Press

ISBN: 9780961408800

Category: Mathematics

Page: 760

View: 9499

DOWNLOAD NOW »
Renowned applied mathematician Gilbert Strang teaches applied mathematics with the clear explanations, examples and insights of an experienced teacher. This book progresses steadily through a range of topics from symmetric linear systems to differential equations to least squares and Kalman filtering and optimization. It clearly demonstrates the power of matrix algebra in engineering problem solving. This is an ideal book (beloved by many readers) for a first course on applied mathematics and a reference for more advanced applied mathematicians. The only prerequisite is a basic course in linear algebra.

Stability, Instability and Chaos

An Introduction to the Theory of Nonlinear Differential Equations

Author: Paul Glendinning

Publisher: Cambridge University Press

ISBN: 9780521425667

Category: Mathematics

Page: 388

View: 9197

DOWNLOAD NOW »
An introduction to nonlinear differential equations which equips undergraduate students with the know-how to appreciate stability theory and bifurcation.

An Introduction to Ordinary Differential Equations

Author: James C. Robinson

Publisher: Cambridge University Press

ISBN: 9780521533911

Category: Mathematics

Page: 399

View: 1773

DOWNLOAD NOW »
This refreshing, introductory textbook covers both standard techniques for solving ordinary differential equations, as well as introducing students to qualitative methods such as phase-plane analysis. The presentation is concise, informal yet rigorous; it can be used either for 1-term or 1-semester courses. Topics such as Euler's method, difference equations, the dynamics of the logistic map, and the Lorenz equations, demonstrate the vitality of the subject, and provide pointers to further study. The author also encourages a graphical approach to the equations and their solutions, and to that end the book is profusely illustrated. The files to produce the figures using MATLAB are all provided in an accompanying website. Numerous worked examples provide motivation for and illustration of key ideas and show how to make the transition from theory to practice. Exercises are also provided to test and extend understanding: solutions for these are available for teachers.

Differential Equations and Dynamical Systems

Author: Lawrence Perko

Publisher: Springer Science & Business Media

ISBN: 1461300037

Category: Mathematics

Page: 557

View: 1462

DOWNLOAD NOW »
This textbook presents a systematic study of the qualitative and geometric theory of nonlinear differential equations and dynamical systems. Although the main topic of the book is the local and global behavior of nonlinear systems and their bifurcations, a thorough treatment of linear systems is given at the beginning of the text. All the material necessary for a clear understanding of the qualitative behavior of dynamical systems is contained in this textbook, including an outline of the proof and examples illustrating the proof of the Hartman-Grobman theorem. In addition to minor corrections and updates throughout, this new edition includes materials on higher order Melnikov theory and the bifurcation of limit cycles for planar systems of differential equations.

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

ISBN: 1475740670

Category: Mathematics

Page: 672

View: 3520

DOWNLOAD NOW »
This volume is an introduction to applied nonlinear dynamics and chaos. The emphasis is on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains an extensive bibliography and a detailed glossary of terms.

Introduction to the Foundations of Applied Mathematics

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

ISBN: 0387877657

Category: Mathematics

Page: 468

View: 9209

DOWNLOAD NOW »
FOAM. This acronym has been used for over ?fty years at Rensselaer to designate an upper-division course entitled, Foundations of Applied Ma- ematics. This course was started by George Handelman in 1956, when he came to Rensselaer from the Carnegie Institute of Technology. His objective was to closely integrate mathematical and physical reasoning, and in the p- cess enable students to obtain a qualitative understanding of the world we live in. FOAM was soon taken over by a young faculty member, Lee Segel. About this time a similar course, Introduction to Applied Mathematics, was introduced by Chia-Ch’iao Lin at the Massachusetts Institute of Technology. Together Lin and Segel, with help from Handelman, produced one of the landmark textbooks in applied mathematics, Mathematics Applied to - terministic Problems in the Natural Sciences. This was originally published in 1974, and republished in 1988 by the Society for Industrial and Applied Mathematics, in their Classics Series. This textbook comes from the author teaching FOAM over the last few years. In this sense, it is an updated version of the Lin and Segel textbook.

Bifurcation Theory

An Introduction with Applications to Partial Differential Equations

Author: Hansjörg Kielhöfer

Publisher: Springer Science & Business Media

ISBN: 1461405025

Category: Mathematics

Page: 400

View: 2941

DOWNLOAD NOW »
In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations. The second edition is substantially and formally revised and new material is added. Among this is bifurcation with a two-dimensional kernel with applications, the buckling of the Euler rod, the appearance of Taylor vortices, the singular limit process of the Cahn-Hilliard model, and an application of this method to more complicated nonconvex variational problems.

Symmetry Methods for Differential Equations

A Beginner's Guide

Author: Peter E. Hydon,Peter Ellsworth Hydon

Publisher: Cambridge University Press

ISBN: 9780521497862

Category: Mathematics

Page: 213

View: 8096

DOWNLOAD NOW »
An introduction to symmetry methods, informally written and aimed at applied mathematicians, physicists, and engineers.

Applied Mathematics in Hydraulic Engineering

An Introduction to Nonlinear Differential Equations

Author: Kazumasa Mizumura

Publisher: World Scientific Publishing Company

ISBN: 9813107855

Category:

Page: 436

View: 3774

DOWNLOAD NOW »
Applied Mathematics in Hydraulic Engineering is an excellent teaching guide and reference to treating nonlinear mathematical problems in hydraulic, hydrologic and coastal engineering. Undergraduates studying civil and coastal engineering, as well as analysis and differential equations, are started off applying calculus to the treatment of nonlinear partial differential equations, before given the chance to practice real-life problems related to the fields. This textbook is not only a good source of teaching materials for teachers or instructors, but is also useful as a comprehensive resource of mathematical tools to researchers.

Nonlinear Ordinary Differential Equations

Author: R. Grimshaw

Publisher: CRC Press

ISBN: 9780849386077

Category: Mathematics

Page: 336

View: 361

DOWNLOAD NOW »
Ordinary differential equations have long been an important area of study because of their wide application in physics, engineering, biology, chemistry, ecology, and economics. Based on a series of lectures given at the Universities of Melbourne and New South Wales in Australia, Nonlinear Ordinary Differential Equations takes the reader from basic elementary notions to the point where the exciting and fascinating developments in the theory of nonlinear differential equations can be understood and appreciated. Each chapter is self-contained, and includes a selection of problems together with some detailed workings within the main text. Nonlinear Ordinary Differential Equations helps develop an understanding of the subtle and sometimes unexpected properties of nonlinear systems and simultaneously introduces practical analytical techniques to analyze nonlinear phenomena. This excellent book gives a structured, systematic, and rigorous development of the basic theory from elementary concepts to a point where readers can utilize ideas in nonlinear differential equations.

Mathematical Biology

Author: James D. Murray

Publisher: Springer Science & Business Media

ISBN: 3662085429

Category: Mathematics

Page: 770

View: 9439

DOWNLOAD NOW »
Mathematics has always benefited from its involvement with developing sciences. Each successive interaction revitalises and enhances the field. Biomedical science is clearly the premier science of the foreseeable future. For the continuing health of their subject mathematicians must become involved with biology. With the example of how mathematics has benefited from and influenced physics, it is clear that if mathematicians do not become involved in the biosciences they will simply not be a part of what are likely to be the most important and exciting scientific discoveries of all time. Mathematical biology is a fast growing, well recognised, albeit not clearly defined, subject and is, to my mind, the most exciting modern application of mathematics. The increasing use of mathematics in biology is inevitable as biol ogy becomes more quantitative. The complexity of the biological sciences makes interdisciplinary involvement essential. For the mathematician, biology opens up new and exciting branches while for the biologist mathematical modelling offers another research tool commmensurate with a new powerful laboratory technique but only if used appropriately and its limitations recognised. However, the use of esoteric mathematics arrogantly applied to biological problems by mathemati cians who know little about the real biology, together with unsubstantiated claims as to how important such theories are, does little to promote the interdisciplinary involvement which is so essential. Mathematical biology research, to be useful and interesting, must be relevant biologically.

An Invitation to Applied Mathematics

Differential Equations, Modeling, and Computation

Author: Carmen Chicone

Publisher: Academic Press

ISBN: 0128041544

Category: Mathematics

Page: 878

View: 5295

DOWNLOAD NOW »
An Invitation to Applied Mathematics: Differential Equations, Modeling, and Computation introduces the reader to the methodology of modern applied mathematics in modeling, analysis, and scientific computing with emphasis on the use of ordinary and partial differential equations. Each topic is introduced with an attractive physical problem, where a mathematical model is constructed using physical and constitutive laws arising from the conservation of mass, conservation of momentum, or Maxwell's electrodynamics. Relevant mathematical analysis (which might employ vector calculus, Fourier series, nonlinear ODEs, bifurcation theory, perturbation theory, potential theory, control theory, or probability theory) or scientific computing (which might include Newton's method, the method of lines, finite differences, finite elements, finite volumes, boundary elements, projection methods, smoothed particle hydrodynamics, or Lagrangian methods) is developed in context and used to make physically significant predictions. The target audience is advanced undergraduates (who have at least a working knowledge of vector calculus and linear ordinary differential equations) or beginning graduate students. Readers will gain a solid and exciting introduction to modeling, mathematical analysis, and computation that provides the key ideas and skills needed to enter the wider world of modern applied mathematics. Presents an integrated wealth of modeling, analysis, and numerical methods in one volume Provides practical and comprehensible introductions to complex subjects, for example, conservation laws, CFD, SPH, BEM, and FEM Includes a rich set of applications, with more appealing problems and projects suggested

An Introduction to Computational Stochastic PDEs

Author: Gabriel J. Lord,Catherine E. Powell,Tony Shardlow

Publisher: Cambridge University Press

ISBN: 0521899907

Category: Business & Economics

Page: 520

View: 1728

DOWNLOAD NOW »
This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.

An Introduction to Delay Differential Equations with Applications to the Life Sciences

Author: hal smith

Publisher: Springer Science & Business Media

ISBN: 9781441976468

Category: Mathematics

Page: 172

View: 1096

DOWNLOAD NOW »
This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.

Ordinary Differential Equations with Applications

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 9780387985350

Category: Mathematics

Page: 561

View: 4247

DOWNLOAD NOW »
This graduate-level textbook offers students a rapid introduction to the language of ordinary differential equations followed by a careful treatment of the central topics of the qualitative theory. In addition, special attention is given to the origins and applications of differential equations in physical science and engineering.

The Princeton Companion to Applied Mathematics

Author: Nicholas J. Higham

Publisher: Princeton University Press

ISBN: 1400874475

Category: Mathematics

Page: 1016

View: 1051

DOWNLOAD NOW »
This is the most authoritative and accessible single-volume reference book on applied mathematics. Featuring numerous entries by leading experts and organized thematically, it introduces readers to applied mathematics and its uses; explains key concepts; describes important equations, laws, and functions; looks at exciting areas of research; covers modeling and simulation; explores areas of application; and more. Modeled on the popular Princeton Companion to Mathematics, this volume is an indispensable resource for undergraduate and graduate students, researchers, and practitioners in other disciplines seeking a user-friendly reference book on applied mathematics. Features nearly 200 entries organized thematically and written by an international team of distinguished contributors Presents the major ideas and branches of applied mathematics in a clear and accessible way Explains important mathematical concepts, methods, equations, and applications Introduces the language of applied mathematics and the goals of applied mathematical research Gives a wide range of examples of mathematical modeling Covers continuum mechanics, dynamical systems, numerical analysis, discrete and combinatorial mathematics, mathematical physics, and much more Explores the connections between applied mathematics and other disciplines Includes suggestions for further reading, cross-references, and a comprehensive index

Elements of Pure and Applied Mathematics

Author: Harry Lass

Publisher: Courier Corporation

ISBN: 0486471861

Category: Mathematics

Page: 491

View: 7022

DOWNLOAD NOW »
Completely self-contained, this survey explores the important topics in pure and applied mathematics. Each chapter can be read independently of the others, and all subjects are unified by cross-references to the complete work. Numerous worked-out examples appear throughout the text, and review questions and references conclude each section. 1957 edition.

Information Technology and Applied Mathematics

ICITAM 2017

Author: Peeyush Chandra,Debasis Giri,Fagen Li,Samarjit Kar,Dipak Kumar Jana

Publisher: Springer

ISBN: 9811075905

Category: Computers

Page: 236

View: 2490

DOWNLOAD NOW »
This book discusses recent advances and contemporary research in the field of cryptography, security, mathematics and statistics, and their applications in computing and information technology. Mainly focusing on mathematics and applications of mathematics in computer science and information technology, it includes contributions from eminent international scientists, researchers, and scholars. The book helps researchers update their knowledge of cryptography, security, algebra, frame theory, optimizations, stochastic processes, compressive sensing, functional analysis, and complex variables.

Partial Differential Equations: Modeling, Analysis and Numerical Approximation

Author: Hervé Le Dret,Brigitte Lucquin

Publisher: Birkhäuser

ISBN: 3319270672

Category: Mathematics

Page: 395

View: 3974

DOWNLOAD NOW »
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.