## Differential Geometry

Curves - Surfaces - Manifolds

Author: Wolfgang Kühnel

Publisher: American Mathematical Soc.

ISBN: 9780821839881

Category: Mathematics

Page: 380

View: 9587

Our first knowledge of differential geometry usually comes from the study of the curves and surfaces in I\!\!R^3 that arise in calculus. Here we learn about line and surface integrals, divergence and curl, and the various forms of Stokes' Theorem. If we are fortunate, we may encounter curvature and such things as the Serret-Frenet formulas. With just the basic tools from multivariable calculus, plus a little knowledge of linear algebra, it is possible to begin a much richer and rewarding study of differential geometry, which is what is presented in this book. It starts with an introduction to the classical differential geometry of curves and surfaces in Euclidean space, then leads to an introduction to the Riemannian geometry of more general manifolds, including a look at Einstein spaces. An important bridge from the low-dimensional theory to the general case is provided by a chapter on the intrinsic geometry of surfaces. The first half of the book, covering the geometry of curves and surfaces, would be suitable for a one-semester undergraduate course. The local and global theories of curves and surfaces are presented, including detailed discussions of surfaces of rotation, ruled surfaces, and minimal surfaces. The second half of the book, which could be used for a more advanced course, begins with an introduction to differentiable manifolds, Riemannian structures, and the curvature tensor. Two special topics are treated in detail: spaces of constant curvature and Einstein spaces. The main goal of the book is to get started in a fairly elementary way, then to guide the reader toward more sophisticated concepts and more advanced topics. There are many examples and exercises to help along the way. Numerous figures help the reader visualize key concepts and examples, especially in lower dimensions. For the second edition, a number of errors were corrected and some text and a number of figures have been added.

## Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 5113

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

## Minimal Submanifolds in Pseudo-Riemannian Geometry

Author: Henri Anciaux

Publisher: World Scientific

ISBN: 9814291242

Category: Mathematics

Page: 167

View: 5662

Since the foundational work of Lagrange on the differential equation to be satisfied by a minimal surface of the Euclidean space, the theory of minimal submanifolds have undergone considerable developments, involving techniques from related areas, such as the analysis of partial differential equations and complex analysis. On the other hand, the relativity theory has led to the study of pseudo-Riemannian manifolds, which turns out to be the most general framework for the study of minimal submanifolds. However, most of the recent books on the subject still present the theory only in the Riemannian case. For the first time, this textbook provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian geometry, only assuming from the reader some basic knowledge about manifold theory. Several classical results, such as the Weierstrass representation formula for minimal surfaces, and the minimizing properties of complex submanifolds, are presented in full generality without sacrificing the clarity of exposition. Finally, a number of very recent results on the subject, including the classification of equivariant minimal hypersurfaces in pseudo-Riemannian space forms and the characterization of minimal Lagrangian surfaces in some pseudo-Khler manifolds are given.

## Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 1779

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

## The Theory of Quantum Torus Knots - Volume III

Author: Michael Ungs

Publisher: Lulu.com

ISBN: 0557605016

Category: Technology & Engineering

Page: 616

View: 6687

Appendicies A to I that are referenced by Volumes I and II in the theory of quantum torus knots (QTK). A detailed mathematical derivation of space curves is provided that links the diverse fields of superfluids, quantum mechanics, and hydrodynamics.

## A New Approach to Differential Geometry using Clifford's Geometric Algebra

Author: John Snygg

Publisher: Springer Science & Business Media

ISBN: 0817682821

Category: Mathematics

Page: 465

View: 1308

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.

## Differential Geometry and Its Applications

Author: John Oprea

Publisher: MAA

ISBN: 9780883857489

Category: Mathematics

Page: 469

View: 4408

Differential geometry has a long, wonderful history it has found relevance in areas ranging from machinery design of the classification of four-manifolds to the creation of theories of nature's fundamental forces to the study of DNA. This book studies the differential geometry of surfaces with the goal of helping students make the transition from the compartmentalized courses in a standard university curriculum to a type of mathematics that is a unified whole, it mixes geometry, calculus, linear algebra, differential equations, complex variables, the calculus of variations, and notions from the sciences. Differential geometry is not just for mathematics majors, it is also for students in engineering and the sciences. Into the mix of these ideas comes the opportunity to visualize concepts through the use of computer algebra systems such as Maple. The book emphasizes that this visualization goes hand-in-hand with the understanding of the mathematics behind the computer construction. Students will not only “see” geodesics on surfaces, but they will also see the effect that an abstract result such as the Clairaut relation can have on geodesics. Furthermore, the book shows how the equations of motion of particles constrained to surfaces are actually types of geodesics. Students will also see how particles move under constraints. The book is rich in results and exercises that form a continuous spectrum, from those that depend on calculation to proofs that are quite abstract.

## Internationale Mathematische Nachrichten

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 8855

Issues for Dec. 1952- include section: Nachrichten der Österreichischen Mathematischen Gesellschaft.

## Globale Analysis

Differentialformen in Analysis, Geometrie und Physik

Author: Ilka Agricola,Thomas Friedrich

Publisher: Springer-Verlag

ISBN: 3322929035

Category: Mathematics

Page: 283

View: 6423

Das Anliegen des Buches ist es, die klassische Vektoranalysis unter Verwendung der Differentialformen darzulegen. Anwendungen der allgemeinen Stokeschen Formel in Analysis, Geometrie und Topologie werden besprochen. In weiteren Teilen des Buches werden die Integrierbarkeit Pfaffscher Systeme, die Flächentheorie in Euklidischen Räumen sowie Elemente der Lie-Gruppen, Mechanik, Thermodynamik und Elektrodynamik unter Verwendung der Differentialformen behandelt.

## Geometrie und Billard

Author: Serge Tabachnikov

Publisher: Springer-Verlag

ISBN: 3642319254

Category: Mathematics

Page: 165

View: 7847

Wie bewegt sich ein Massenpunkt in einem Gebiet, an dessen Rand er elastisch zurückprallt? Welchen Weg nimmt ein Lichtstrahl in einem Gebiet mit ideal reflektierenden Rändern? Anhand dieser und ähnlicher Fragen stellt das vorliegende Buch Zusammenhänge zwischen Billard und Differentialgeometrie, klassischer Mechanik sowie geometrischer Optik her. Dabei beschäftigt sich das Buch unter anderem mit dem Variationsprinzip beim mathematischen Billard, der symplektischen Geometrie von Lichtstrahlen, der Existenz oder Nichtexistenz von Kaustiken, periodischen Billardtrajektorien und dem Mechanismus für Chaos bei der Billarddynamik. Ergänzend wartet dieses Buch mit einer beachtlichen Anzahl von Exkursen auf, die sich verwandten Themen widmen, darunter der Vierfarbensatz, die mathematisch-physikalische Beschreibung von Regenbögen, der poincaresche Wiederkehrsatz, Hilberts viertes Problem oder der Schließungssatz von Poncelet.​

## Ebene algebraische Kurven

Author: Gerd Fischer

Publisher: Springer-Verlag

ISBN: 3322803112

Category: Mathematics

Page: 177

View: 9869

Neben den elementaren Dingen, wie Tangenten, Singularitäten und Wendepunkten werden auch schwierigere Begriffe wie lokale Zweige und Geschlecht behandelt. Höhepunkte sind die klassischen Formeln von Plücker und Clebsch, die Beziehungen zwischen verschiedenen globalen und lokalen Invarianten einer Kurve beschreiben.

## DIFFERENTIAL GEOMETRY OF MANIFOLDS

Author: QUDDUS KHAN

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120346505

Category: Mathematics

Page: 256

View: 1916

Curves and surfaces are objects that everyone can see, and many of the questions that can be asked about them are natural and easily understood. Differential geometry is concerned with the precise mathematical formulation of some of these questions, while trying to answer them using calculus techniques. The geometry of differentiable manifolds with structures is one of the most important branches of modern differential geometry. This well-written book discusses the theory of differential and Riemannian manifolds to help students understand the basic structures and consequent developments. While introducing concepts such as bundles, exterior algebra and calculus, Lie group and its algebra and calculus, Riemannian geometry, submanifolds and hypersurfaces, almost complex manifolds, etc., enough care has been taken to provide necessary details which enable the reader to grasp them easily. The material of this book has been successfully tried in classroom teaching. The book is designed for the postgraduate students of Mathematics. It will also be useful to the researchers working in the field of differential geometry and its applications to general theory of relativity and cosmology, and other applied areas. KEY FEATURES  Provides basic concepts in an easy-to-understand style.  Presents the subject in a natural way.  Follows a coordinate-free approach.  Includes a large number of solved examples and illuminating illustrations.  Gives notes and remarks at appropriate places.

## Partielle Differentialgleichungen

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 8174

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

## How to Do Everything with Microsoft Office InfoPath 2003

Author: David McAmis

Publisher: McGraw Hill Professional

ISBN: 9780072231274

Category: Computers

Page: 450

View: 7223

Tap into the power of the newest member of Microsoft’s Office suite. Learn to use InfoPath’s robust set of tools to capture information that’s locked away in document-based forms. Quickly create forms and data-gathering applications that use XML to separate form and content. This “raw” information can then be integrated into back-end systems, providing an end-to-end solution for data capture in the enterprise.

## Differential Geometry of Curves and Surfaces

Author: Thomas F. Banchoff,Stephen T. Lovett

Publisher: CRC Press

ISBN: 1482247372

Category: Mathematics

Page: 414

View: 7546

Differential Geometry of Curves and Surfaces, Second Edition takes both an analytical/theoretical approach and a visual/intuitive approach to the local and global properties of curves and surfaces. Requiring only multivariable calculus and linear algebra, it develops students’ geometric intuition through interactive computer graphics applets supported by sound theory. The book explains the reasons for various definitions while the interactive applets offer motivation for certain definitions, allow students to explore examples further, and give a visual explanation of complicated theorems. The ability to change parametric curves and parametrized surfaces in an applet lets students probe the concepts far beyond what static text permits. New to the Second Edition Reworked presentation to make it more approachable More exercises, both introductory and advanced New section on the application of differential geometry to cartography Additional investigative project ideas Significantly reorganized material on the Gauss–Bonnet theorem Two new sections dedicated to hyperbolic and spherical geometry as applications of intrinsic geometry A new chapter on curves and surfaces in Rn Suitable for an undergraduate-level course or self-study, this self-contained textbook and online software applets provide students with a rigorous yet intuitive introduction to the field of differential geometry. The text gives a detailed introduction of definitions, theorems, and proofs and includes many types of exercises appropriate for daily or weekly assignments. The applets can be used for computer labs, in-class illustrations, exploratory exercises, or self-study aids.

## Elementare Differentialgeometrie

Author: Christian Bär

Publisher: Walter de Gruyter

ISBN: 3110224593

Category: Mathematics

Page: 356

View: 6671

This textbook presents an introduction to the differential geometry of curves and surfaces. This second, revised edition has been expanded to include solutions and applications in cartography. Topics include Euclidean geometry, curve theory, surface theory, curvature concepts, minimal surfaces, Riemann geometry and the Gauss-Bonnet theorem.

## Forthcoming Books

Author: R.R. Bowker Company. Department of Bibliography

Publisher: N.A

ISBN: N.A

Category:

Page: N.A

View: 3656

## An Introduction to Differential Geometry

Author: T. J. Willmore

Publisher: Courier Corporation

ISBN: 0486282104

Category: Mathematics

Page: 336

View: 8711

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

## Lectures on Differential Geometry

Author: Iskander Asanovich Taĭmanov

Publisher: European Mathematical Society

ISBN: 9783037190500

Category: Mathematics

Page: 211

View: 7912

This book gives an introduction to the basics of differential geometry, keeping in mind the natural origin of many geometrical quantities, as well as the applications of differential geometry and its methods to other sciences. The book is based on lectures the author held repeatedly at Novosibirsk State University. It is addressed to students as well as to anyone who wants to learn the basics of differential geometry.

## Anschauliche Funktionentheorie

Author: Tristan Needham

Publisher: Oldenbourg Wissenschaftsverlag

ISBN: 9783486709025

Category: Mathematics

Page: 685

View: 8044