Differential Topology

First Steps

Author: Andrew H. Wallace

Publisher: Courier Corporation

ISBN: 0486150038

Category: Mathematics

Page: 144

View: 3354

DIVKeeping mathematical prerequisites to a minimum, this undergraduate-level text stimulates students' intuitive understanding of topology while avoiding the more difficult subtleties and technicalities. 1968 edition. /div

Thinking in Problems

How Mathematicians Find Creative Solutions

Author: Alexander A. Roytvarf

Publisher: Springer Science & Business Media

ISBN: 0817684069

Category: Mathematics

Page: 405

View: 3297

This concise, self-contained textbook gives an in-depth look at problem-solving from a mathematician’s point-of-view. Each chapter builds off the previous one, while introducing a variety of methods that could be used when approaching any given problem. Creative thinking is the key to solving mathematical problems, and this book outlines the tools necessary to improve the reader’s technique. The text is divided into twelve chapters, each providing corresponding hints, explanations, and finalization of solutions for the problems in the given chapter. For the reader’s convenience, each exercise is marked with the required background level. This book implements a variety of strategies that can be used to solve mathematical problems in fields such as analysis, calculus, linear and multilinear algebra and combinatorics. It includes applications to mathematical physics, geometry, and other branches of mathematics. Also provided within the text are real-life problems in engineering and technology. Thinking in Problems is intended for advanced undergraduate and graduate students in the classroom or as a self-study guide. Prerequisites include linear algebra and analysis.

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 9459

Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Algebraic Topology

Author: C. R. F. Maunder

Publisher: Courier Corporation

ISBN: 9780486691312

Category: Mathematics

Page: 375

View: 5024

Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.

Experiments in Topology

Author: Stephen Barr

Publisher: Courier Corporation

ISBN: 9780486259338

Category: Mathematics

Page: 210

View: 5870

"A mathematician named Klein Thought the Moebius band was divine. Said he: 'If you glue The edges of two, You'll get a weird bottle like mine.' " — Stephen Barr In this lively book, the classic in its field, a master of recreational topology invites readers to venture into such tantalizing topological realms as continuity and connectedness via the Klein bottle and the Moebius strip. Beginning with a definition of topology and a discussion of Euler's theorem, Mr. Barr brings wit and clarity to these topics: New Surfaces (Orientability, Dimension, The Klein Bottle, etc.) The Shortest Moebius Strip The Conical Moebius Strip The Klein Bottle The Projective Plane (Symmetry) Map Coloring Networks (Koenigsberg Bridges, Betti Numbers, Knots) The Trial of the Punctured Torus Continuity and Discreteness ("Next Number," Continuity, Neighborhoods, Limit Points) Sets (Valid or Merely True? Venn Diagrams, Open and Closed Sets, Transformations, Mapping, Homotopy) With this book and a square sheet of paper, the reader can make paper Klein bottles, step by step; then, by intersecting or cutting the bottle, make Moebius strips. Conical Moebius strips, projective planes, the principle of map coloring, the classic problem of the Koenigsberg bridges, and many more aspects of topology are carefully and concisely illuminated by the author's informal and entertaining approach. Now in this inexpensive paperback edition, Experiments in Topology belongs in the library of any math enthusiast with a taste for brainteasing adventures

Homology Theory on Algebraic Varieties

Author: Andrew H. Wallace

Publisher: Courier Corporation

ISBN: 0486799905

Category: Mathematics

Page: 128

View: 6643

Concise and authoritative monograph, geared toward advanced undergraduate and graduate students, covers linear sections, singular and hyperplane sections, Lefschetz's first and second theorems, the Poincaré formula, and invariant and relative cycles. 1958 edition.

Lectures on Surfaces

(almost) Everything You Wanted to Know about Them

Author: A. B. Katok,Vaughn Climenhaga

Publisher: American Mathematical Soc.

ISBN: 0821846795

Category: Mathematics

Page: 286

View: 1050

Surfaces are among the most common and easily visualized mathematical objects, and their study brings into focus fundamental ideas, concepts, and methods from geometry, topology, complex analysis, Morse theory, and group theory. At the same time, many of those notions appear in a technically simpler and more graphic form than in their general 'natural' settings. The first, primarily expository, chapter introduces many of the principal actors - the round sphere, flat torus, Mobius strip, Klein bottle, elliptic plane, etc. - as well as various methods of describing surfaces, beginning with the traditional representation by equations in three-dimensional space, proceeding to parametric representation, and also introducing the less intuitive, but central for our purposes, representation as factor spaces.It concludes with a preliminary discussion of the metric geometry of surfaces, and the associated isometry groups. Subsequent chapters introduce fundamental mathematical structures - topological, combinatorial (piecewise linear), smooth, Riemannian (metric), and complex - in the specific context of surfaces. The focal point of the book is the Euler characteristic, which appears in many different guises and ties together concepts from combinatorics, algebraic topology, Morse theory, ordinary differential equations, and Riemannian geometry.The repeated appearance of the Euler characteristic provides both a unifying theme and a powerful illustration of the notion of an invariant in all those theories. The assumed background is the standard calculus sequence, some linear algebra, and rudiments of ODE and real analysis. All notions are introduced and discussed, and virtually all results proved, based on this background. This book is a result of the MASS course in geometry in the fall semester of 2007.

Differential Geometry

Author: Erwin Kreyszig

Publisher: Courier Corporation

ISBN: 9780486667218

Category: Mathematics

Page: 352

View: 3108

Text from preface: "This book provides an introduction to the differential geometry of curves and surfaces in three-dimensional Euclidean space"

Moscow Mathematical Olympiads, 1993-1999

Author: Roman Mikhaĭlovich Fedorov,Silvio Levy

Publisher: American Mathematical Soc.

ISBN: 0821853635

Category: Mathematics

Page: 220

View: 8612

The Moscow Mathematical Olympiad has been challenging high school students with stimulating, original problems of different degrees of difficulty for over 75 years. The problems are nonstandard; solving them takes wit, thinking outside the box, and, sometimes, hours of contemplation. Some are within the reach of most mathematically competent high school students, while others are difficult even for a mathematics professor. Many mathematically inclined students have found that tackling these problems, or even just reading their solutions, is a great way to develop mathematical insight. In 2006 the Moscow Center for Continuous Mathematical Education began publishing a collection of problems from the Moscow Mathematical Olympiads, providing for each an answer (and sometimes a hint) as well as one or more detailed solutions. This volume represents the years 1993-1999. The problems and the accompanying material are well suited for math circles. They are also appropriate for problem-solving classes and practice for regional and national mathematics competitions. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).


Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 1199

Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

Principia Mathematica.

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A


Category: Logic, Symbolic and mathematical

Page: 167

View: 8050


Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 4348

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.