Dynamical Systems and Chaos

Author: Henk Broer,Floris Takens

Publisher: Springer Science & Business Media

ISBN: 9781441968708

Category: Mathematics

Page: 313

View: 4620

DOWNLOAD NOW »
Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chapters have been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section. The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.

An Introduction to Dynamical Systems and Chaos

Author: G.C. Layek

Publisher: Springer

ISBN: 8132225562

Category: Mathematics

Page: 622

View: 2471

DOWNLOAD NOW »
The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.

Introduction to Discrete Dynamical Systems and Chaos

Author: Mario Martelli

Publisher: John Wiley & Sons

ISBN: 1118031121

Category: Mathematics

Page: 344

View: 2445

DOWNLOAD NOW »
A timely, accessible introduction to the mathematics of chaos. The past three decades have seen dramatic developments in the theory of dynamical systems, particularly regarding the exploration of chaotic behavior. Complex patterns of even simple processes arising in biology, chemistry, physics, engineering, economics, and a host of other disciplines have been investigated, explained, and utilized. Introduction to Discrete Dynamical Systems and Chaos makes these exciting and important ideas accessible to students and scientists by assuming, as a background, only the standard undergraduate training in calculus and linear algebra. Chaos is introduced at the outset and is then incorporated as an integral part of the theory of discrete dynamical systems in one or more dimensions. Both phase space and parameter space analysis are developed with ample exercises, more than 100 figures, and important practical examples such as the dynamics of atmospheric changes and neural networks. An appendix provides readers with clear guidelines on how to use Mathematica to explore discrete dynamical systems numerically. Selected programs can also be downloaded from a Wiley ftp site (address in preface). Another appendix lists possible projects that can be assigned for classroom investigation. Based on the author's 1993 book, but boasting at least 60% new, revised, and updated material, the present Introduction to Discrete Dynamical Systems and Chaos is a unique and extremely useful resource for all scientists interested in this active and intensely studied field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley editorial department.

Die Erforschung des Chaos

Eine Einführung für Naturwissenschaftler und Ingenieure

Author: John H. Argyris,Gunter Faust,Maria Haase

Publisher: Springer-Verlag

ISBN: 3322904415

Category: Mathematics

Page: 790

View: 5553

DOWNLOAD NOW »
Das Buch stellt die grundlegenden Konzepte der Chaos-Theorie und die mathematischen Hilfsmittel so elementar wie möglich dar.

Die Erforschung des Chaos

Eine Einführung für Naturwissenschaftler und Ingenieure

Author: John Argyris,Gunter Faust,Maria Haase

Publisher: Vieweg+Teubner Verlag

ISBN: 9783528089412

Category: Mathematics

Page: 790

View: 7172

DOWNLOAD NOW »
Das Buch stellt die grundlegenden Konzepte der Chaos-Theorie und die mathematischen Hilfsmittel so elementar wie möglich dar.

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Author: Morris W. Hirsch,Stephen Smale,Robert L. Devaney

Publisher: Academic Press

ISBN: 0123820103

Category: Mathematics

Page: 418

View: 713

DOWNLOAD NOW »
Hirsch, Devaney, and Smale's classic Differential Equations, Dynamical Systems, and an Introduction to Chaos has been used by professors as the primary text for undergraduate and graduate level courses covering differential equations. It provides a theoretical approach to dynamical systems and chaos written for a diverse student population among the fields of mathematics, science, and engineering. Prominent experts provide everything students need to know about dynamical systems as students seek to develop sufficient mathematical skills to analyze the types of differential equations that arise in their area of study. The authors provide rigorous exercises and examples clearly and easily by slowly introducing linear systems of differential equations. Calculus is required as specialized advanced topics not usually found in elementary differential equations courses are included, such as exploring the world of discrete dynamical systems and describing chaotic systems. Classic text by three of the world's most prominent mathematicians Continues the tradition of expository excellence Contains updated material and expanded applications for use in applied studies

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Author: Stephen Wiggins

Publisher: Springer Science & Business Media

ISBN: 1475740670

Category: Mathematics

Page: 672

View: 7954

DOWNLOAD NOW »
This volume is an introduction to applied nonlinear dynamics and chaos. The emphasis is on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains an extensive bibliography and a detailed glossary of terms.

Discrete Dynamical Systems, Bifurcations and Chaos in Economics

Author: Wei-Bin Zhang

Publisher: Elsevier

ISBN: 9780080462462

Category: Mathematics

Page: 460

View: 7105

DOWNLOAD NOW »
This book is a unique blend of difference equations theory and its exciting applications to economics. It deals with not only theory of linear (and linearized) difference equations, but also nonlinear dynamical systems which have been widely applied to economic analysis in recent years. It studies most important concepts and theorems in difference equations theory in a way that can be understood by anyone who has basic knowledge of calculus and linear algebra. It contains well-known applications and many recent developments in different fields of economics. The book also simulates many models to illustrate paths of economic dynamics. A unique book concentrated on theory of discrete dynamical systems and its traditional as well as advanced applications to economics Mathematical definitions and theorems are introduced in a systematic and easily accessible way Examples are from almost all fields of economics; technically proceeding from basic to advanced topics Lively illustrations with numerous figures Numerous simulation to see paths of economic dynamics Comprehensive treatment of the subject with a comprehensive and easily accessible approach

Discrete dynamical systems and chaos

Author: Mario Martelli

Publisher: Chapman & Hall/CRC

ISBN: N.A

Category: Mathematics

Page: 282

View: 3759

DOWNLOAD NOW »
In a balanced presentation, this Monograph presents definitions and results on dynamical systems and chaos in a manner accessible to undergraduates in a range of disciplines with of theoretical results and practical applications.

Chaos

An Introduction to Dynamical Systems

Author: Kathleen Alligood,Tim Sauer,J.A. Yorke

Publisher: Springer

ISBN: 3642592813

Category: Mathematics

Page: 603

View: 9360

DOWNLOAD NOW »
BACKGROUND Sir Isaac Newton hrought to the world the idea of modeling the motion of physical systems with equations. It was necessary to invent calculus along the way, since fundamental equations of motion involve velocities and accelerations, of position. His greatest single success was his discovery that which are derivatives the motion of the planets and moons of the solar system resulted from a single fundamental source: the gravitational attraction of the hodies. He demonstrated that the ohserved motion of the planets could he explained hy assuming that there is a gravitational attraction he tween any two ohjects, a force that is proportional to the product of masses and inversely proportional to the square of the distance between them. The circular, elliptical, and parabolic orhits of astronomy were v INTRODUCTION no longer fundamental determinants of motion, but were approximations of laws specified with differential equations. His methods are now used in modeling motion and change in all areas of science. Subsequent generations of scientists extended the method of using differ ential equations to describe how physical systems evolve. But the method had a limitation. While the differential equations were sufficient to determine the behavior-in the sense that solutions of the equations did exist-it was frequently difficult to figure out what that behavior would be. It was often impossible to write down solutions in relatively simple algebraic expressions using a finite number of terms. Series solutions involving infinite sums often would not converge beyond some finite time.

Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems

Applications to Power Converters, Relay and Pulse-Width Modulated Control Systems, and Human Decision-Making Behavior

Author: Zhanybai T Zhusubaliyev,Erik Mosekilde

Publisher: World Scientific

ISBN: 9814485632

Category: Science

Page: 376

View: 5595

DOWNLOAD NOW »
' Technical problems often lead to differential equations with piecewise-smooth right-hand sides. Problems in mechanical engineering, for instance, violate the requirements of smoothness if they involve collisions, finite clearances, or stick-slip phenomena. Systems of this type can display a large variety of complicated bifurcation scenarios that still lack a detailed description. This book presents some of the fascinating new phenomena that one can observe in piecewise-smooth dynamical systems. The practical significance of these phenomena is demonstrated through a series of well-documented and realistic applications to switching power converters, relay systems, and different types of pulse-width modulated control systems. Other examples are derived from mechanical engineering, digital electronics, and economic business-cycle theory. The topics considered in the book include abrupt transitions associated with modified period-doubling, saddle-node and Hopf bifurcations, the interplay between classical bifurcations and border-collision bifurcations, truncated bifurcation scenarios, period-tripling and -quadrupling bifurcations, multiple-choice bifurcations, new types of direct transitions to chaos, and torus destruction in nonsmooth systems. In spite of its orientation towards engineering problems, the book addresses theoretical and numerical problems in sufficient detail to be of interest to nonlinear scientists in general. Contents:On the Dynamics of Nonlinear SystemsBasic Concepts and MethodsRelay Control SystemsBifurcations and Chaotic Oscillations in Relay SystemsChaotic Oscillations in Pulse-Width Modulated SystemsBorder-Collision Bifurcations on a Two-Dimensional TorusBorder-Collision Bifurcations in a Management System Readership: Graduate students and researchers in nonlinear science and chaos theory; electrical and electronic engineers; experts in control theory and in applied mathematics. Keywords:Chaos;Bifurcations;Border-Collision Bifurcations;Piecewise-Smooth Dynamical Systems;Relay Control Systems;Pulse-Width Modulated Control Systems;Power Converters;Human Decision-Making BehaviorReviews:“This book is an important guide for engineers and all scientists working with non-smooth models.”Mathematical Reviews “The book contains interesting examples of piecewise-smooth dynamical systems and its bifurcation phenomena with direct applications … it will certainly be a useful tool for many scientists and engineers.”Zentralblatt MATH '

An Exploration of Dynamical Systems and Chaos

Completely Revised and Enlarged Second Edition

Author: John Argyris,Gunter Faust,Maria Haase,Rudolf Friedrich

Publisher: Springer

ISBN: 3662460424

Category: Technology & Engineering

Page: 865

View: 8881

DOWNLOAD NOW »
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlarged second edition which comprises recently obtained research results of topical interest, and has been extended to include a new section on the basic concepts of probability theory. A completely new chapter on fully developed turbulence presents the successes of chaos theory, its limitations as well as future trends in the development of complex spatio-temporal structures. "This book will be of valuable help for my lectures" Hermann Haken, Stuttgart "This text-book should not be missing in any introductory lecture on non-linear systems and deterministic chaos" Wolfgang Kinzel, Würzburg “This well written book represents a comprehensive treatise on dynamical systems. It may serve as reference book for the whole field of nonlinear and chaotic systems and reports in a unique way on scientific developments of recent decades as well as important applications.” Joachim Peinke, Institute of Physics, Carl-von-Ossietzky University Oldenburg, Germany

Chaos in Discrete Dynamical Systems

A Visual Introduction in 2 Dimensions

Author: Ralph Abraham,Laura Gardini,Christian Mira

Publisher: Springer Science & Business Media

ISBN: 1461219361

Category: Mathematics

Page: 246

View: 7811

DOWNLOAD NOW »
The materials in the book and on the accompanying disc are not solely developed with only the researcher and professional in mind, but also with consideration for the student: most of this material has been class-tested by the authors. The book is packed with some 100 computer graphics to illustrate the material, and the CD-ROM contains full-colour animations tied directly to the subject matter of the book itself. The cross-platform CD also contains the program ENDO, which enables users to create their own 2-D imagery with X-Windows. Maple scripts are provided to allow readers to work directly with the code from which the graphics in the book were taken.

Chaos in Dynamical Systems

Author: Edward Ott

Publisher: Cambridge University Press

ISBN: 1139936573

Category: Science

Page: N.A

View: 4861

DOWNLOAD NOW »
Over the past two decades scientists, mathematicians, and engineers have come to understand that a large variety of systems exhibit complicated evolution with time. This complicated behavior is known as chaos. In the new edition of this classic textbook Edward Ott has added much new material and has significantly increased the number of homework problems. The most important change is the addition of a completely new chapter on control and synchronization of chaos. Other changes include new material on riddled basins of attraction, phase locking of globally coupled oscillators, fractal aspects of fluid advection by Lagrangian chaotic flows, magnetic dynamos, and strange nonchaotic attractors. This new edition will be of interest to advanced undergraduates and graduate students in science, engineering, and mathematics taking courses in chaotic dynamics, as well as to researchers in the subject.

Dynamical Systems

Stability, Symbolic Dynamics, and Chaos

Author: Clark Robinson

Publisher: CRC Press

ISBN: 1482227878

Category: Mathematics

Page: 520

View: 7135

DOWNLOAD NOW »
Several distinctive aspects make Dynamical Systems unique, including: treating the subject from a mathematical perspective with the proofs of most of the results included providing a careful review of background materials introducing ideas through examples and at a level accessible to a beginning graduate student focusing on multidimensional systems of real variables The book treats the dynamics of both iteration of functions and solutions of ordinary differential equations. Many concepts are first introduced for iteration of functions where the geometry is simpler, but results are interpreted for differential equations. The dynamical systems approach of the book concentrates on properties of the whole system or subsets of the system rather than individual solutions. The more local theory discussed deals with characterizing types of solutions under various hypothesis, and later chapters address more global aspects.

Bifurcation and Chaos in Simple Dynamical Systems

Author: J Awrejcewicz

Publisher: World Scientific

ISBN: 9814520055

Category: Science

Page: 136

View: 5865

DOWNLOAD NOW »
This book presents a detailed analysis of bifurcation and chaos in simple non-linear systems, based on previous works of the author. Practical examples for mechanical and biomechanical systems are discussed. The use of both numerical and analytical approaches allows for a deeper insight into non-linear dynamical phenomena. The numerical and analytical techniques presented do not require specific mathematical knowledge. Contents:Hopf Bifurcation Problem: An Analytical Approach:One Parameter Hopf BifurcationBiparameter Hopf BifurcationBifurcation into Quasiperiodic TorusHopf Bifurcation in Duffing OscillatorHopf Bifurcation in Nonstationary Nonlinear SystemsBifurcation and Chaos: Numerical Method Based on Solving Boundary Value Problem:Gradual and Sudden Transition to ChaosThree Different Routes to ChaosBifurcation of the Oscillations of Vocal CordsChaos After Bifurcation of Periodic and Quasiperiodic Orbits:Oscillator with a Static Load and Particular Exciting ForceParticular van der Pol — Duffing OscillatorOscillator with Delay Readership: Applied scientists, mechanical engineers, biomechanical engineers and students. Keywords:Hopf Bifurcation;Resonance;Period Doubling Bifurcation;Oscillations of Vocal Cords;Chaos;Boundary Value Problem;Shooting;Delay;Periodic and Quasi-Periodic Orbits;Floquet Multipliers

Predictability, Stability, and Chaos in N-Body Dynamical Systems

Author: Archie E. Roy

Publisher: Springer Science & Business Media

ISBN: 146845997X

Category: Science

Page: 616

View: 4911

DOWNLOAD NOW »
The reader will find in this volume the Proceedings of the NATO Advanced Study Institute held in Cortina d'Ampezzo, Italy between August 6 and August 17, 1990 under the title "Predictability, Stability, and Chaos in N-Body Dynamical Systems". The Institute was the latest in a series held at three-yearly inter vals from 1972 to 1987 in dynamical astronomy, theoretical mechanics and celestial mechanics. These previous institutes, held in high esteem by the international community of research workers, have resulted in a series of well-received Proceedings. The 1990 Institute attracted 74 participants from 16 countries, six outside the NATO group. Fifteen series of lectures were given by invited speakers; additionally some 40 valuable presentations were made by the younger participants, most of which are included in these Proceedings. The last twenty years in particular has been a time of increasingly rapid progress in tackling long-standing and also newly-arising problems in dynamics of N-body systems, point-mass and non-point-mass, a rate of progress achieved because of correspondingly rapid developments of new computer hardware and software together with the advent of new analytical techniques. It was a time of exciting progress culminating in the ability to carry out research programmes into the evolution of the outer Solar 8 System over periods of more than 10 years and to study star cluster and galactic models in unprecedented detail.

Differential Equations, Dynamical Systems, and an Introduction to Chaos

Author: Morris W. Hirsch,Stephen Smale,Robert L. Devaney

Publisher: Academic Press

ISBN: 0123497035

Category: Mathematics

Page: 417

View: 1630

DOWNLOAD NOW »
This text is about the dynamical aspects of ordinary differential equations and the relations between dynamical systems and certain fields outside pure mathematics. It is an update of one of Academic Press's most successful mathematics texts ever published, which has become the standard textbook for graduate courses in this area. The authors are tops in the field of advanced mathematics. Steve Smale is a Field's Medalist, which equates to being a Nobel prize winner in mathematics. Bob Devaney has authored several leading books in this subject area. Linear algebra prerequisites toned down from first edition Inclusion of analysis of examples of chaotic systems, including Lorenz, Rosssler, and Shilnikov systems Bifurcation theory included throughout.

Dynamical Systems

From Crystal to Chaos : Proceedings of the Conference in Honor of Gerard Rauzy on His 60th Birthday, Luminy-Marseille, France, 6-10 July 1998

Author: Jean-Marc Gambaudo

Publisher: World Scientific

ISBN: 9789810242176

Category: Science

Page: 306

View: 760

DOWNLOAD NOW »
This book focuses on the interactions between discrete and geometric dynamical systems, and between dynamical systems and theoretical physics and computer science. Accordingly, the contributions revolve around two main topics: (1) interaction between geometric and symbolic systems, with emphasis on tiling problems for quasicrystals, substitutions and their multidimensional generalizations, geodesic and horocycle flow, adic systems; (2) dynamical systems: geometry and chaos, with special interest in smooth ergodic theory, statistical and multifractal properties of chaotic systems, stability and turbulence in extended complex systems.