Dynamics Of Complex Systems

Author: Yaneer Bar-yam

Publisher: Westview Press

ISBN: 9780813341217

Category: Science

Page: 864

View: 4269

DOWNLOAD NOW »
The study of complex systems in a unified framework has become recognized in recent years as a new scientific discipline, the ultimate in the interdisciplinary fields. Breaking down the barriers between physics, chemistry, and biology and the so-called soft sciences of psychology, sociology, economics and anthropology, this text explores the universal physical and mathematical principles that govern the emergence of complex systems from simple components. Dynamics of Complex Systems is the first text describing the modern unified study of complex systems. It is designed for upper-undergraduate/beginning graduate level students, and covers a broad range of applications in a broad array of disciplines. A central goal of this text is to develop models and modeling techniques that are useful when applied to all complex systems. This is done by adopting both analytic tools, including statistical mechanics and stochastic dynamics, and computer simulation techniques, such as cellular automata and Monte Carlo. In four sets of paired, self-contained chapters, Yaneer Bar-Yam discusses complex systems in the context of neural networks, protein folding, living organisms, and finally, human civilization itself. He explores fundamental questions about the structure, dynamics, evolution, development and quantitative complexity that apply to all complex systems. In the first chapter, mathematical foundations such as iterative maps and chaos, probability theory and random walks, thermodynamics, information and computation theory, fractals and scaling, are reviewed to enable the text to be read by students and researchers with a variety of backgrounds.

Dynamics of Complex Systems

Author: Yaneer Bar-Yam

Publisher: Perseus Books

ISBN: N.A

Category: Science

Page: 848

View: 7483

DOWNLOAD NOW »
Dynamics of Complex Systems is the first text describing the modern unified study of complex systems. It is designed for upper-undergraduate/beginning graduate-level students, and covers a broad range of applications in a broad array of disciplines. A central goal of this text is to develop models and modeling techniques that are useful when applied to all complex systems. This is done by adopting both analytic tools, including statistical mechanics and stochastic dynamics, and computer simulation techniques, such as cellular automata and Monte Carlo. In four sets of paired, self-contained chapters, Yaneer Bar-Yam discusses complex systems in the context of neural networks, protein folding, living organisms, and finally, human civilization itself.

Stochastic Dynamics of Complex Systems

From Glasses to Evolution

Author: Paolo Sibani,Henrik Jeldtoft Jensen

Publisher: World Scientific Publishing Company

ISBN: 1848169957

Category: Mathematics

Page: 300

View: 6095

DOWNLOAD NOW »
Dynamical evolution over long time scales is a prominent feature of all the systems we intuitively think of as complex — for example, ecosystems, the brain or the economy. In physics, the term ageing is used for this type of slow change, occurring over time scales much longer than the patience, or indeed the lifetime, of the observer. The main focus of this book is on the stochastic processes which cause ageing, and the surprising fact that the ageing dynamics of systems which are very different at the microscopic level can be treated in similar ways. The first part of this book provides the necessary mathematical and computational tools and the second part describes the intuition needed to deal with these systems. Some of the first few chapters have been covered in several other books, but the emphasis and selection of the topics reflect both the authors' interests and the overall theme of the book. The second part contains an introduction to the scientific literature and deals in some detail with the description of complex phenomena of a physical and biological nature, for example, disordered magnetic materials, superconductors and glasses, models of co-evolution in ecosystems and even of ant behaviour. These heterogeneous topics are all dealt with in detail using similar analytical techniques. This book emphasizes the unity of complex dynamics and provides the tools needed to treat a large number of complex systems of current interest. The ideas and the approach to complex dynamics it presents have not appeared in book form until now.

Geometrical Dynamics of Complex Systems

A Unified Modelling Approach to Physics, Control, Biomechanics, Neurodynamics and Psycho-Socio-Economical Dynamics

Author: Vladimir G. Ivancevic,Tijana T. Ivancevic

Publisher: Taylor & Francis

ISBN: 9781402045448

Category: Language Arts & Disciplines

Page: 822

View: 8037

DOWNLOAD NOW »
Geometrical Dynamics of Complex Systems is a graduate-level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By'complexsystems', inthis book are meant high-dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds: engineering, physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi-input multi-output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular 'soft complexity philosophy', we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high-dimensional nonlinear systems and processes of 'real life' can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well-known that linear systems, which are completely predictable and controllable by de?nition - live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.

The Synchronized Dynamics of Complex Systems

Author: Stefano Boccaletti

Publisher: Elsevier

ISBN: 9780080560427

Category: Science

Page: 258

View: 5021

DOWNLOAD NOW »
The origin of the word synchronization is a greek root, meaning "to share the common time". The original meaning of synchronization has been maintained up to now in the colloquial use of this word, as agreement or correlation in time of different processes. Historically, the analysis of synchronization phenomena in the evolution of dynamical systems has been a subject of active investigation since the earlier days of physics. Recently, the search for synchronization has moved to chaotic systems. In this latter framework, the appearance of collective (synchronized) dynamics is, in general, not trivial. Indeed, a dynamical system is called chaotic whenever its evolution sensitively depends on the initial conditions. The above said implies that two trajectories emerging from two different closeby initial conditions separate exponentially in the course of the time. As a result, chaotic systems intrinsically defy synchronization, because even two identical systems starting from slightly different initial conditions would evolve in time in a unsynchronized manner (the differences in the systems' states would grow exponentially). This is a relevant practical problem, insofar as experimental initial conditions are never known perfectly. The setting of some collective (synchronized) behavior in coupled chaotic systems has therefore a great importance and interest. The subject of the present book is to summarize the recent discoveries involving the study of synchronization in coupled chaotic systems. Not always the word synchronization is taken as having the same colloquial meaning, and one needs to specify what synchrony means in all particular contexts in which we will describe its emergence. The book describes the complete synchronization phenomenon, both for low and for high dimensional situations, and illustrates possible applications in the field of communicating with chaos. Furthermore, the book summarizes the concepts of phase synchronization, lag synchronization, imperfect phase synchronization, and generalized synchronization, describing a general transition scenario between a hierarchy of different types of synchronization for chaotic oscillators. These concepts are extended to the case of structurally different systems, of uncoupled systems subjected to a common external source, of space extended nonlinearly evolving fields, and of dynamical units networking via a complex wiring of connections, giving thus a summary of all possible situations that are encountered in real life and in technology. · Technical, but not specialistic language · About 100 illustrative Figures · Full overview on synchronization phenomena · Review of the main tools and techniques used in the field · Paradigmatic examples and experiments illustrating the basic concepts · Full Reference to the main publications existing in the literature on the subject

The Dynamics of Complex Urban Systems

An Interdisciplinary Approach

Author: Sergio Albeverio,Denise Andrey,Paolo Giordano,Alberto Vancheri

Publisher: Springer Science & Business Media

ISBN: 3790819379

Category: Business & Economics

Page: 484

View: 4505

DOWNLOAD NOW »
This book contains the contributions presented at the international workshop "The Dynamics of Complex Urban Systems: an interdisciplinary approach" held in Ascona, Switzerland in November 2004. Experts from several disciplines outline a conceptual framework for modeling and forecasting the dynamics of both growth-limited cities and megacities. Coverage reflects the various interdependencies between structural and social development.

Philosophy of Complex Systems

Author: N.A

Publisher: Elsevier

ISBN: 9780080931227

Category: Philosophy

Page: 952

View: 1771

DOWNLOAD NOW »
The domain of nonlinear dynamical systems and its mathematical underpinnings has been developing exponentially for a century, the last 35 years seeing an outpouring of new ideas and applications and a concomitant confluence with ideas of complex systems and their applications from irreversible thermodynamics. A few examples are in meteorology, ecological dynamics, and social and economic dynamics. These new ideas have profound implications for our understanding and practice in domains involving complexity, predictability and determinism, equilibrium, control, planning, individuality, responsibility and so on. Our intention is to draw together in this volume, we believe for the first time, a comprehensive picture of the manifold philosophically interesting impacts of recent developments in understanding nonlinear systems and the unique aspects of their complexity. The book will focus specifically on the philosophical concepts, principles, judgments and problems distinctly raised by work in the domain of complex nonlinear dynamical systems, especially in recent years. -Comprehensive coverage of all main theories in the philosophy of Complex Systems -Clearly written expositions of fundamental ideas and concepts -Definitive discussions by leading researchers in the field -Summaries of leading-edge research in related fields are also included

Applications of Nonlinear Dynamics

Model and Design of Complex Systems

Author: Visarath In,Patrick Longhini,Antonio Palacios

Publisher: Springer Science & Business Media

ISBN: 3540856323

Category: Technology & Engineering

Page: 478

View: 1938

DOWNLOAD NOW »
The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations,lasers,andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and systems.

Foundations of Complex Systems

Emergence, Information and Prediction

Author: G. Nicolis

Publisher: World Scientific

ISBN: 9814366617

Category: Mathematics

Page: 384

View: 7171

DOWNLOAD NOW »
This book provides a self-contained presentation of the physical and mathematical laws governing complex systems. Complex systems arising in natural, engineering, environmental, life and social sciences are approached from a unifying point of view using an array of methodologies such as microscopic and macroscopic level formulations, deterministic and probabilistic tools, modeling and simulation. The book can be used as a textbook by graduate students, researchers and teachers in science, as well as non-experts who wish to have an overview of one of the most open, markedly interdisciplinary and fast-growing branches of present-day science.

Mathematical Methods in Engineering

Author: Nuno Miguel Fonseca Ferreira,Jose Antonio Tenreiro Machado

Publisher: Springer

ISBN: 9400771835

Category: Technology & Engineering

Page: 322

View: 7269

DOWNLOAD NOW »
This book presents a careful selection of the contributions presented at the Mathematical Methods in Engineering (MME10) International Symposium, held at the Polytechnic Institute of Coimbra- Engineering Institute of Coimbra (IPC/ISEC), Portugal, October 21-24, 2010. The volume discusses recent developments about theoretical and applied mathematics toward the solution of engineering problems, thus covering a wide range of topics, such as: Automatic Control, Autonomous Systems, Computer Science, Dynamical Systems and Control, Electronics, Finance and Economics, Fluid Mechanics and Heat Transfer, Fractional Mathematics, Fractional Transforms and Their Applications, Fuzzy Sets and Systems, Image and Signal Analysis, Image Processing, Mechanics, Mechatronics, Motor Control and Human Movement Analysis, Nonlinear Dynamics, Partial Differential Equations, Robotics, Acoustics, Vibration and Control, and Wavelets.

The Evolutionary Dynamics of Complex Systems

A Study in Biosocial Complexity

Author: Charles Dyke

Publisher: Oxford University Press, USA

ISBN: N.A

Category: Science

Page: 161

View: 7705

DOWNLOAD NOW »
Dyke examines the controversial topics of sociobiology and evolution from scientific and philosophical perspectives. At issue are the basic underpinnings of biology: explanation, determination, teleology, reductionism, and hierarchy. The author proposes that progress in sociobiology and evolution is hindered by an outmoded philosophical view of science that does not adequately take into account recent advances in our understanding of basic biological processes. His goal is to shift the focus from a philosophical understanding based on observation from outside biology to a dynamic, philosophically aware science.

Models of Science Dynamics

Encounters Between Complexity Theory and Information Sciences

Author: Andrea Scharnhorst,Katy Börner,Peter van den Besselaar

Publisher: Springer Science & Business Media

ISBN: 3642230679

Category: Social Science

Page: 270

View: 4759

DOWNLOAD NOW »
Models of Science Dynamics aims to capture the structure and evolution of science, the emerging arena in which scholars, science and the communication of science become themselves the basic objects of research. In order to capture the essence of phenomena as diverse as the structure of co-authorship networks or the evolution of citation diffusion patterns, such models can be represented by conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, or computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive study of the topic. This volume fills this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy.

Thinking in Complexity

The Complex Dynamics of Matter, Mind, and Mankind

Author: Klaus Mainzer

Publisher: Springer Science & Business Media

ISBN: 3662033054

Category: Science

Page: 351

View: 8862

DOWNLOAD NOW »
Since the first edition sold out in less than a year, we now present the revised second edition of Mainzer's popular book. The theory of nonlinear complex systems has become a successful problem-solving approach in the natural sciences from laser physics, quantum chaos, and meteorology to computer simulations of cell growth in biology. It is now recognized that many of our social, ecological, and political problems are also of a global, complex, and nonlinear nature. And one of the most exciting contemporary topics is the idea that even the human mind is governed largely by the nonlinear dynamics of complex systems. In this wide-ranging but concise treatment, Prof. Mainzer discusses, in a nontechnical language, the common framework behind these endeavors. Emphasis is given to the evolution of new structures in natural and cultural systems and we see clearly how the new integrative approach can give insights not available from traditional reductionistic methods.

The Local Information Dynamics of Distributed Computation in Complex Systems

Author: Joseph T. Lizier

Publisher: Springer Science & Business Media

ISBN: 3642329527

Category: Technology & Engineering

Page: 236

View: 2392

DOWNLOAD NOW »
The nature of distributed computation in complex systems has often been described in terms of memory, communication and processing. This thesis presents a complete information-theoretic framework to quantify these operations on information (i.e. information storage, transfer and modification), and in particular their dynamics in space and time. The framework is applied to cellular automata, and delivers important insights into the fundamental nature of distributed computation and the dynamics of complex systems (e.g. that gliders are dominant information transfer agents). Applications to several important network models, including random Boolean networks, suggest that the capability for information storage and coherent transfer are maximised near the critical regime in certain order-chaos phase transitions. Further applications to study and design information structure in the contexts of computational neuroscience and guided self-organisation underline the practical utility of the techniques presented here.

Model Emergent Dynamics in Complex Systems

Author: A. J. Roberts

Publisher: SIAM

ISBN: 1611973554

Category: Mathematics

Page: 748

View: 4123

DOWNLOAD NOW »
Arising out of the growing interest in and applications of modern dynamical systems theory, this book explores how to derive relatively simple dynamical equations that model complex physical interactions.÷ The author?s objectives are to use sound theory to explore algebraic techniques, develop interesting applications, and discover general modeling principles.÷

Nonlinear Dynamics in Complex Systems

Theory and Applications for the Life-, Neuro- and Natural Sciences

Author: Armin Fuchs

Publisher: Springer Science & Business Media

ISBN: 3642335527

Category: Mathematics

Page: 238

View: 1749

DOWNLOAD NOW »
With many areas of science reaching across their boundaries and becoming more and more interdisciplinary, students and researchers in these fields are confronted with techniques and tools not covered by their particular education. Especially in the life- and neurosciences quantitative models based on nonlinear dynamics and complex systems are becoming as frequently implemented as traditional statistical analysis. Unfamiliarity with the terminology and rigorous mathematics may discourage many scientists to adopt these methods for their own work, even though such reluctance in most cases is not justified. This book bridges this gap by introducing the procedures and methods used for analyzing nonlinear dynamical systems. In Part I, the concepts of fixed points, phase space, stability and transitions, among others, are discussed in great detail and implemented on the basis of example elementary systems. Part II is devoted to specific, non-trivial applications: coordination of human limb movement (Haken-Kelso-Bunz model), self-organization and pattern formation in complex systems (Synergetics), and models of dynamical properties of neurons (Hodgkin-Huxley, Fitzhugh-Nagumo and Hindmarsh-Rose). Part III may serve as a refresher and companion of some mathematical basics that have been forgotten or were not covered in basic math courses. Finally, the appendix contains an explicit derivation and basic numerical methods together with some programming examples as well as solutions to the exercises provided at the end of certain chapters. Throughout this book all derivations are as detailed and explicit as possible, and everybody with some knowledge of calculus should be able to extract meaningful guidance follow and apply the methods of nonlinear dynamics to their own work. “This book is a masterful treatment, one might even say a gift, to the interdisciplinary scientist of the future.” “With the authoritative voice of a genuine practitioner, Fuchs is a master teacher of how to handle complex dynamical systems.” “What I find beautiful in this book is its clarity, the clear definition of terms, every step explained simply and systematically.” (J.A.Scott Kelso, excerpts from the foreword)

From Waves in Complex Systems to Dynamics of Generalized Continua

Tributes to Professor Yih-Hsing Pao on His 80th Birthday

Author: Kolumban Hutter,Yi-Chung Shu

Publisher: World Scientific

ISBN: 9814340723

Category: Continuum mechanics

Page: 401

View: 2348

DOWNLOAD NOW »
The book reviews recent research activities in applied mechanics and applied mathematics such as the fields of solid & fluid constitutive modeling for coupled fields, applications of geophysical & environmental context in judicious numerical-computational implementations. The book aims to merge foundation aspects of continuum mechanics with modern technological applications, notably on reviewing recent advances in the treated subjects in an attractive presentation accessible to a wide readership of engineering and applied sciences.

A Concise Introduction to the Statistical Physics of Complex Systems

Author: Eric Bertin

Publisher: Springer Science & Business Media

ISBN: 9783642239236

Category: Science

Page: 77

View: 3933

DOWNLOAD NOW »
This concise primer (based on lectures given at summer schools on complex systems and on a masters degree course in complex systems modeling) will provide graduate students and newcomers to the field with the basic knowledge of the concepts and methods of statistical physics and its potential for application to interdisciplinary topics. Indeed, in recent years, statistical physics has begun to attract the interest of a broad community of researchers in the field of complex system sciences, ranging from biology to the social sciences, economics and computer science. More generally, a growing number of graduate students and researchers feel the need to learn some basic concepts and questions originating in other disciplines without necessarily having to master all of the corresponding technicalities and jargon. Generally speaking, the goals of statistical physics may be summarized as follows: on the one hand to study systems composed of a large number of interacting ‘entities’, and on the other to predict the macroscopic (or collective) behavior of the system considered from the microscopic laws ruling the dynamics of the individual ‘entities’. These two goals are, to some extent, also shared by what is nowadays called ‘complex systems science’ and for these reasons, systems studied in the framework of statistical physics may be considered as among the simplest examples of complex systems—allowing in addition a rather well developed mathematical treatment.

An Introduction to Complex Systems

Society, Ecology, and Nonlinear Dynamics

Author: Paul Fieguth

Publisher: Springer

ISBN: 3319446061

Category: Science

Page: 346

View: 2610

DOWNLOAD NOW »
This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or perspective. Instead, the book seeks to emphasize understanding, concepts, and ideas, in a way that is mathematically rigorous, so that the concepts do not feel vague, but not so technical that the mathematics get in the way. The book is intended for undergraduate students in a technical domain such as engineering, computer science, physics, mathematics, and environmental studies.