Engineering Differential Equations

Theory and Applications

Author: Bill Goodwine

Publisher: Springer Science & Business Media

ISBN: 1441979190

Category: Mathematics

Page: 745

View: 4419

DOWNLOAD NOW »
This book is a comprehensive treatment of engineering undergraduate differential equations as well as linear vibrations and feedback control. While this material has traditionally been separated into different courses in undergraduate engineering curricula. This text provides a streamlined and efficient treatment of material normally covered in three courses. Ultimately, engineering students study mathematics in order to be able to solve problems within the engineering realm. Engineering Differential Equations: Theory and Applications guides students to approach the mathematical theory with much greater interest and enthusiasm by teaching the theory together with applications. Additionally, it includes an abundance of detailed examples. Appendices include numerous C and FORTRAN example programs. This book is intended for engineering undergraduate students, particularly aerospace and mechanical engineers and students in other disciplines concerned with mechanical systems analysis and control. Prerequisites include basic and advanced calculus with an introduction to linear algebra.

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS

THEORY AND APPLICATIONS

Author: NITA H. SHAH

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120350871

Category: Mathematics

Page: 528

View: 8692

DOWNLOAD NOW »
This revised and updated text, now in its second edition, continues to present the theoretical concepts of methods of solutions of ordinary and partial differential equations. It equips students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of ordinary and partial differential equations. It contains different methods of solving ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The text elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel’s and Legendre’s equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics. New to the SECOND Edition • Includes new sections and subsections such as applications of differential equations, special substitution (Lagrange and Riccati), solutions of non-linear equations which are exact, method of variation of parameters for linear equations of order higher than two, and method of undetermined coefficients • Incorporates several worked-out examples and exercises with their answers • Contains a new Chapter 19 on ‘Z-Transforms and its Applications’.

Differential Equations: Theory and Applications

with Maple®

Author: David Betounes

Publisher: Springer Science & Business Media

ISBN: 1475749716

Category: Mathematics

Page: 680

View: 6660

DOWNLOAD NOW »
This book provides a comprehensive introduction to the theory of ordinary differential equations with a focus on mechanics and dynamical systems as important applications of the theory. The text is written to be used in the traditional way or in a more applied way. The accompanying CD contains Maple worksheets for the exercises, and special Maple code for performing various tasks. In addition to its use in a traditional one or two semester graduate course in mathematics, the book is organized to be used for interdisciplinary courses in applied mathematics, physics, and engineering.

Theory and Applications of Partial Differential Equations

Author: Piero Bassanini,Alan R. Elcrat

Publisher: Springer Science & Business Media

ISBN: 1489918752

Category: Mathematics

Page: 444

View: 6851

DOWNLOAD NOW »
This book is a product of the experience of the authors in teaching partial differential equations to students of mathematics, physics, and engineering over a period of 20 years. Our goal in writing it has been to introduce the subject with precise and rigorous analysis on the one hand, and interesting and significant applications on the other. The starting level of the book is at the first-year graduate level in a U.S. university. Previous experience with partial differential equations is not required, but the use of classical analysis to find solutions of specific problems is not emphasized. From that perspective our treatment is decidedly theoretical. We have avoided abstraction and full generality in many situations, however. Our plan has been to introduce fundamental ideas in relatively simple situations and to show their impact on relevant applications. The student is then, we feel, well prepared to fight through more specialized treatises. There are parts of the exposition that require Lebesgue integration, distributions and Fourier transforms, and Sobolev spaces. We have included a long appendix, Chapter 8, giving precise statements of all results used. This may be thought of as an introduction to these topics. The reader who is not familiar with these subjects may refer to parts of Chapter 8 as needed or become somewhat familiar with them as prerequisite and treat Chapter 8 as Chapter O.

Partielle Differentialgleichungen der Geometrie und der Physik 2

Funktionalanalytische Lösungsmethoden

Author: Friedrich Sauvigny

Publisher: Springer-Verlag

ISBN: 3540275401

Category: Mathematics

Page: 350

View: 6209

DOWNLOAD NOW »
Das zweibändige Lehrbuch behandelt das Gebiet der partiellen Differentialgleichungen umfassend und anschaulich. Der Autor stellt in Band 2 funktionalanalytische Lösungsmethoden vor und erläutert u. a. die Lösbarkeit von Operatorgleichungen im Banachraum, lineare Operatoren im Hilbertraum und Spektraltheorie, die Schaudersche Theorie linearer elliptischer Differentialgleichungen sowie schwache Lösungen elliptischer Differentialgleichungen.

Ordinary Differential Equations with Applications

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 9780387985350

Category: Mathematics

Page: 561

View: 6277

DOWNLOAD NOW »
This graduate-level textbook offers students a rapid introduction to the language of ordinary differential equations followed by a careful treatment of the central topics of the qualitative theory. In addition, special attention is given to the origins and applications of differential equations in physical science and engineering.

Optimale Steuerung partieller Differentialgleichungen

Theorie, Verfahren und Anwendungen

Author: Fredi Tröltzsch

Publisher: Springer-Verlag

ISBN: 3322968448

Category: Mathematics

Page: 298

View: 5195

DOWNLOAD NOW »
Die mathematische Theorie der optimalen Steuerung hat sich im Zusammenhang mit Berechnungen für die Luft- und Raumfahrt schnell zu einem wichtigen und eigenständigen Gebiet der angewandten Mathematik entwickelt. Die optimale Steuerung durch partielle Differentialgleichungen modellierter Prozesse wird eine numerische Herausforderung der Zukunft sein. Sie erfordert die Analysis nichtlinearer partieller Differentialgleichungen, Optimierung im Funktionenraum, nichtlineare Funktionalanalysis sowie Optimierungsverfahren für extrem große Aufgaben. Im Buch werden entsprechende Grundlagen mit langsam steigendem Schwierigkeitsgrad entwickelt. Grundkenntnisse zu partiellen Differentialgleichungen und der Funktionalanalysis werden jeweils dort gebracht, wo sie konkret nötig sind. Das Buch enthält viele Beispiele und eignet sich als Grundlage für Vorlesungen und Seminare.

Decomposition Methods for Differential Equations

Theory and Applications

Author: Juergen Geiser

Publisher: CRC Press

ISBN: 9781439810972

Category: Mathematics

Page: 304

View: 5688

DOWNLOAD NOW »
Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and numerical results. The book focuses on the modeling of selected multi-physics problems, before introducing decomposition analysis. It presents time and space discretization, temporal decomposition, and the combination of time and spatial decomposition methods for parabolic and hyperbolic equations. The author then applies these methods to numerical problems, including test examples and real-world problems in physical and engineering applications. For the computational results, he uses various software tools, such as MATLAB®, R3T, WIAS-HiTNIHS, and OPERA-SPLITT. Exploring iterative operator-splitting methods, this book shows how to use higher-order discretization methods to solve differential equations. It discusses decomposition methods and their effectiveness, combination possibility with discretization methods, multi-scaling possibilities, and stability to initial and boundary values problems.

DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS

Author: ZAFAR AHSAN

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120352696

Category: Mathematics

Page: 660

View: 3558

DOWNLOAD NOW »
Primarily intended for the undergraduate students of mathematics, physics and engineering, this text gives in-depth coverage of differential equations and the methods for solving them. The book begins with the definitions, the physical and geometric origins of differential equations, and the methods for solving the first order differential equations. Then it goes on to give the applications of these equations to such areas as biology, medical sciences, electrical engineering and economics. The text also discusses, systematically and logically, higher order differential equations and their applications to telecommunications, civil engineering, cardiology and detection of diabetes, as also the methods of solving simultaneous differential equations and their applications. Besides, the book provides a detailed discussion on Laplace transforms and their applications, partial differential equations and their applications to vibration of stretched string, heat flow, transmission lines, etc., and calculus of variations and its applications. The book, which is a happy fusion of theory and application, would also be useful to postgraduate students.NEW TO THIS EDITION • New sections on: (a) Equations reducible to linear partial differential equations (b) General method for solving the second order non-linear partial differential equations (Monge’s Method) (c) Lagrange’s equations of motion • Number of solved examples in Chapters 5, 7, 8, 9 and 10.

ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS : THEORY AND APPLICATIONS

Author: NITA H. SHAH

Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120341029

Category:

Page: N.A

View: 6703

DOWNLOAD NOW »
This book presents the theoretical concepts of methods of solutions of ordinary and partial differential equations as well as equips the students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of differential equations, different methods of solving ordinary differential equations and the solution procedure for ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The book elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel's and Legendre's equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics.

Differential Equations for Engineers

Author: Wei-Chau Xie

Publisher: Cambridge University Press

ISBN: 1139488163

Category: Technology & Engineering

Page: N.A

View: 1474

DOWNLOAD NOW »
Xie presents a systematic introduction to ordinary differential equations for engineering students and practitioners. Mathematical concepts and various techniques are presented in a clear, logical, and concise manner. Various visual features are used to highlight focus areas. Complete illustrative diagrams are used to facilitate mathematical modeling of application problems. Readers are motivated by a focus on the relevance of differential equations through their applications in various engineering disciplines. Studies of various types of differential equations are determined by engineering applications. Theory and techniques for solving differential equations are then applied to solve practical engineering problems. A step-by-step analysis is presented to model the engineering problems using differential equations from physical principles and to solve the differential equations using the easiest possible method. This book is suitable for undergraduate students in engineering.

Introduction to the Theory and Application of Differential Equations with Deviating Arguments

Author: L.E. El'sgol'ts,S.B. Norkin

Publisher: Academic Press

ISBN: 0080956149

Category: Computers

Page: 356

View: 1868

DOWNLOAD NOW »
Introduction to the Theory and Application of Differential Equations with Deviating Arguments 2nd edition is a revised and substantially expanded edition of the well-known book of L. E. El’sgol’ts published under this same title by Nauka in 1964. Extensions of the theory of differential equations with deviating argument as well as the stimuli of developments within various fields of science and technology contribute to the need for a new edition. This theory in recent years has attracted the attention of vast numbers of researchers, interested both in the theory and its applications. The development of the foundations of the theory of differential equations with a deviating argument is still far from complete. This situation, of course, leaves its mark on our suggestions to the reader of the book and prevents as orderly and systematic a presentation as is usual for mathematical literature. However, it is hoped that in spite of these deficiencies the book will prove useful as a first acquaintanceship with the theory of differential equations with a deviating argument.

Theory of Stochastic Differential Equations with Jumps and Applications

Mathematical and Analytical Techniques with Applications to Engineering

Author: Rong SITU

Publisher: Springer Science & Business Media

ISBN: 0387251758

Category: Mathematics

Page: 434

View: 736

DOWNLOAD NOW »
Stochastic differential equations (SDEs) are a powerful tool in science, mathematics, economics and finance. This book will help the reader to master the basic theory and learn some applications of SDEs. In particular, the reader will be provided with the backward SDE technique for use in research when considering financial problems in the market, and with the reflecting SDE technique to enable study of optimal stochastic population control problems. These two techniques are powerful and efficient, and can also be applied to research in many other problems in nature, science and elsewhere.

Ordinary Differential Equations

Methods and Applications

Author: W. T. Ang,Y. S. Park

Publisher: Universal-Publishers

ISBN: 1599429756

Category: Mathematics

Page: 204

View: 7599

DOWNLOAD NOW »
This introductory course in ordinary differential equations, intended for junior undergraduate students in applied mathematics, science and engineering, focuses on methods of solution and applications rather than theoretical analyses. Applications drawn mainly from dynamics, population biology and electric circuit theory are used to show how ordinary differential equations appear in the formulation of problems in science and engineering. The calculus required to comprehend this course is rather elementary, involving differentiation, integration and power series representation of only real functions of one variable. A basic knowledge of complex numbers and their arithmetic is also assumed, so that elementary complex functions which can be used for working out easily the general solutions of certain ordinary differential equations can be introduced. The pre-requisites just mentioned aside, the course is mainly self-contained. To promote the use of this course for self-study, suggested solutions are not only given to all set exercises, but they are also by and large complete with details.

Stochastic Differential Equations

Theory and Applications

Author: Ludwig Arnold

Publisher: Severn House Paperbacks

ISBN: 9780486482361

Category: Stochastic differential equations

Page: 256

View: 815

DOWNLOAD NOW »
Practical and not too rigorous, this highly readable text on stochastic calculus provides an excellent introduction to stochastic partial differential equations. Written at a moderately advanced level, it covers important topics often ignored by other texts on the subject—including Fokker-Planck equations—and it functions as both a classroom text and a reference for professionals and students. The only prerequisite is the mathematical preparation usual for students of physical and engineering sciences. An introductory chapter, intended for reference and review, covers the basics of probability theory. Subsequent chapters focus on Markov and diffusion processes, Wiener process and white noise, and stochastic integrals and differential equations. Additional topics include questions of modeling and approximation, stability of stochastic dynamic systems, optimal filtering of a disturbed signal, and optimal control of stochastic dynamic systems.

Partial Differential Equations

Theory and Completely Solved Problems

Author: Thomas Hillen,I. E. Leonard,Henry van Roessel

Publisher: John Wiley & Sons

ISBN: 1118438434

Category: Mathematics

Page: 696

View: 2061

DOWNLOAD NOW »
Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

Theory and Application of Single Equations

Author: Hyun-Ku Rhee,Rutherford Aris,Neal Russell Amundson

Publisher: Courier Corporation

ISBN: 0486419932

Category: Mathematics

Page: 543

View: 6573

DOWNLOAD NOW »
This first volume of a highly regarded 2-volume text is fully usable on its own. The authors discuss mathematical models that yield first-order partial differential equations; motivations, classifications, and methods of solution; linear and semilinear equations; and much more. Exercises appear at the end of most sections. 1986 edition. Includes 189 black-and-white illustrations. Author and subject indices.

Optimal Control of Partial Differential Equations

Theory, Methods, and Applications

Author: Fredi Tröltzsch

Publisher: American Mathematical Soc.

ISBN: 0821849042

Category: Mathematics

Page: 399

View: 1314

DOWNLOAD NOW »
"Optimal control theory is concerned with finding control functions that minimize cost functions for systems described by differential equations. The methods have found widespread applications in aeronautics, mechanical engineering, the life sciences, and many other disciplines. This book focuses on optimal control problems where the state equation is an elliptic or parabolic partial differential equation. Included are topics such as the existence of optimal solutions, necessary optimality conditions and adjoint equations, second-order sufficient conditions, and main principles of selected numerical techniques. It also contains a survey on the Karush-Kuhn-Tucker theory of nonlinear programming in Banach spaces. The exposition begins with control problems with linear equations, quadratic cost functions and control constraints. To make the book self-contained, basic facts on weak solutions of elliptic and parabolic equations are introduced. Principles of functional analysis are introduced and explained as they are needed. Many simple examples illustrate the theory and its hidden difficulties. This start to the book makes it fairly self-contained and suitable for advanced undergraduates or beginning graduate students. Advanced control problems for nonlinear partial differential equations are also discussed. As prerequisites, results on boundedness and continuity of solutions to semilinear elliptic and parabolic equations are addressed. These topics are not yet readily available in books on PDEs, making the exposition also interesting for researchers. Alongside the main theme of the analysis of problems of optimal control, Tr'oltzsch also discusses numerical techniques. The exposition is confined to brief introductions into the basic ideas in order to give the reader an impression of how the theory can be realized numerically. After reading this book, the reader will be familiar with the main principles of the numerical analysis of PDE-constrained optimization."--Publisher's description.

Green’s Functions and Linear Differential Equations

Theory, Applications, and Computation

Author: Prem K. Kythe

Publisher: CRC Press

ISBN: 1439840091

Category: Mathematics

Page: 382

View: 1110

DOWNLOAD NOW »
Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green’s function method, which is used to solve initial and boundary value problems involving linear ODEs and PDEs. It also contains a large number of examples and exercises from diverse areas of mathematics, applied science, and engineering. Taking a direct approach, the book first unravels the mystery of the Dirac delta function and then explains its relationship to Green’s functions. The remainder of the text explores the development of Green’s functions and their use in solving linear ODEs and PDEs. The author discusses how to apply various approaches to solve initial and boundary value problems, including classical and general variations of parameters, Wronskian method, Bernoulli’s separation method, integral transform method, method of images, conformal mapping method, and interpolation method. He also covers applications of Green’s functions, including spherical and surface harmonics. Filled with worked examples and exercises, this robust, self-contained text fully explains the differential equation problems, includes graphical representations where necessary, and provides relevant background material. It is mathematically rigorous yet accessible enough for readers to grasp the beauty and power of the subject.