Error Correcting Codes

A Mathematical Introduction

Author: D J. Baylis

Publisher: CRC Press

ISBN: 9780412786907

Category: Mathematics

Page: 232

View: 8372

DOWNLOAD NOW »
Assuming little previous mathematical knowledge, Error Correcting Codes provides a sound introduction to key areas of the subject. Topics have been chosen for their importance and practical significance, which Baylis demonstrates in a rigorous but gentle mathematical style. Coverage includes optimal codes; linear and non-linear codes; general techniques of decoding errors and erasures; error detection; syndrome decoding, and much more. Error Correcting Codes contains not only straight maths, but also exercises on more investigational problem solving. Chapters on number theory and polynomial algebra are included to support linear codes and cyclic codes, and an extensive reminder of relevant topics in linear algebra is given. Exercises are placed within the main body of the text to encourage active participation by the reader, with comprehensive solutions provided. Error Correcting Codes will appeal to undergraduate students in pure and applied mathematical fields, software engineering, communications engineering, computer science and information technology, and to organizations with substantial research and development in those areas.

The Mathematics of Encryption: An Elementary Introduction

Author: Margaret Cozzens, Steven J. Miller

Publisher: American Mathematical Soc.

ISBN: 0821883216

Category: Mathematics

Page: 332

View: 4723

DOWNLOAD NOW »
How quickly can you compute the remainder when dividing by 120143? Why would you even want to compute this? And what does this have to do with cryptography? Modern cryptography lies at the intersection of mathematics and computer sciences, involving number theory, algebra, computational complexity, fast algorithms, and even quantum mechanics. Many people think of codes in terms of spies, but in the information age, highly mathematical codes are used every day by almost everyone, whether at the bank ATM, at the grocery checkout, or at the keyboard when you access your email or purchase products online. This book provides a historical and mathematical tour of cryptography, from classical ciphers to quantum cryptography. The authors introduce just enough mathematics to explore modern encryption methods, with nothing more than basic algebra and some elementary number theory being necessary. Complete expositions are given of the classical ciphers and the attacks on them, along with a detailed description of the famous Enigma system. The public-key system RSA is described, including a complete mathematical proof that it works. Numerous related topics are covered, such as efficiencies of algorithms, detecting and correcting errors, primality testing and digital signatures. The topics and exposition are carefully chosen to highlight mathematical thinking and problem solving. Each chapter ends with a collection of problems, ranging from straightforward applications to more challenging problems that introduce advanced topics. Unlike many books in the field, this book is aimed at a general liberal arts student, but without losing mathematical completeness.

An Introduction to Error Correcting Codes with Applications

Author: Scott A. Vanstone,Paul C. van Oorschot

Publisher: Springer Science & Business Media

ISBN: 1475720327

Category: Technology & Engineering

Page: 289

View: 7573

DOWNLOAD NOW »
5. 2 Rings and Ideals 148 5. 3 Ideals and Cyclic Subspaces 152 5. 4 Generator Matrices and Parity-Check Matrices 159 5. 5 Encoding Cyclic Codest 163 5. 6 Syndromes and Simple Decoding Procedures 168 5. 7 Burst Error Correcting 175 5. 8 Finite Fields and Factoring xn-l over GF(q) 181 5. 9 Another Method for Factoring xn-l over GF(q)t 187 5. 10 Exercises 193 Chapter 6 BCH Codes and Bounds for Cyclic Codes 6. 1 Introduction 201 6. 2 BCH Codes and the BCH Bound 205 6. 3 Bounds for Cyclic Codest 210 6. 4 Decoding BCH Codes 215 6. 5 Linearized Polynomials and Finding Roots of Polynomialst 224 6. 6 Exercises 231 Chapter 7 Error Correction Techniques and Digital Audio Recording 7. 1 Introduction 237 7. 2 Reed-Solomon Codes 237 7. 3 Channel Erasures 240 7. 4 BCH Decoding with Erasures 244 7. 5 Interleaving 250 7. 6 Error Correction and Digital Audio Recording 256 7.

A Concise Introduction to Pure Mathematics, Fourth Edition

Author: Martin Liebeck

Publisher: CRC Press

ISBN: 1498722938

Category: Mathematics

Page: 301

View: 5963

DOWNLOAD NOW »
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.

Basic Matrix Algebra with Algorithms and Applications

Author: Robert A. Liebler

Publisher: CRC Press

ISBN: 9781584883333

Category: Mathematics

Page: 264

View: 4154

DOWNLOAD NOW »
Clear prose, tight organization, and a wealth of examples and computational techniques make Basic Matrix Algebra with Algorithms and Applications an outstanding introduction to linear algebra. The author designed this treatment specifically for freshman majors in mathematical subjects and upper-level students in natural resources, the social sciences, business, or any discipline that eventually requires an understanding of linear models. With extreme pedagogical clarity that avoids abstraction wherever possible, the author emphasizes minimal polynomials and their computation using a Krylov algorithm. The presentation is highly visual and relies heavily on work with a graphing calculator to allow readers to focus on concepts and techniques rather than on tedious arithmetic. Supporting materials, including test preparation Maple worksheets, are available for download from the Internet. This unassuming but insightful and remarkably original treatment is organized into bite-sized, clearly stated objectives. It goes well beyond the LACSG recommendations for a first course while still implementing their philosophy and core material. Classroom tested with great success, it prepares readers well for the more advanced studies their fields ultimately will require.

Financial Modelling with Jump Processes

Author: Peter Tankov

Publisher: CRC Press

ISBN: 1135437947

Category: Mathematics

Page: 552

View: 8044

DOWNLOAD NOW »
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematical tools required for applications can be intimidating. Potential users often get the impression that jump and Lévy processes are beyond their reach. Financial Modelling with Jump Processes shows that this is not so. It provides a self-contained overview of the theoretical, numerical, and empirical aspects involved in using jump processes in financial modelling, and it does so in terms within the grasp of nonspecialists. The introduction of new mathematical tools is motivated by their use in the modelling process, and precise mathematical statements of results are accompanied by intuitive explanations. Topics covered in this book include: jump-diffusion models, Lévy processes, stochastic calculus for jump processes, pricing and hedging in incomplete markets, implied volatility smiles, time-inhomogeneous jump processes and stochastic volatility models with jumps. The authors illustrate the mathematical concepts with many numerical and empirical examples and provide the details of numerical implementation of pricing and calibration algorithms. This book demonstrates that the concepts and tools necessary for understanding and implementing models with jumps can be more intuitive that those involved in the Black Scholes and diffusion models. If you have even a basic familiarity with quantitative methods in finance, Financial Modelling with Jump Processes will give you a valuable new set of tools for modelling market fluctuations.

Introduction to Mathematics of Satisfiability

Author: Victor W. Marek

Publisher: CRC Press

ISBN: 9781439801741

Category: Mathematics

Page: 364

View: 7977

DOWNLOAD NOW »
Although this area has a history of over 80 years, it was not until the creation of efficient SAT solvers in the mid-1990s that it became practically important, finding applications in electronic design automation, hardware and software verification, combinatorial optimization, and more. Exploring the theoretical and practical aspects of satisfiability, Introduction to Mathematics of Satisfiability focuses on the satisfiability of theories consisting of propositional logic formulas. It describes how SAT solvers and techniques are applied to problems in mathematics and computer science as well as important applications in computer engineering. The book first deals with logic fundamentals, including the syntax of propositional logic, complete sets of functors, normal forms, the Craig lemma, and compactness. It then examines clauses, their proof theory and semantics, and basic complexity issues of propositional logic. The final chapters on knowledge representation cover finite runs of Turing machines and encodings into SAT. One of the pioneers of answer set programming, the author shows how constraint satisfaction systems can be worked out by satisfiability solvers and how answer set programming can be used for knowledge representation.

Introduction to Coding Theory

Author: Jurgen Bierbrauer

Publisher: CRC Press

ISBN: 1482296373

Category: Mathematics

Page: 390

View: 5202

DOWNLOAD NOW »
Although its roots lie in information theory, the applications of coding theory now extend to statistics, cryptography, and many areas of pure mathematics, as well as pervading large parts of theoretical computer science, from universal hashing to numerical integration. Introduction to Coding Theory introduces the theory of error-correcting codes in a thorough but gentle presentation. Part I begins with basic concepts, then builds from binary linear codes and Reed-Solomon codes to universal hashing, asymptotic results, and 3-dimensional codes. Part II emphasizes cyclic codes, applications, and the geometric desciption of codes. The author takes a unique, more natural approach to cyclic codes that is not couched in ring theory but by virtue of its simplicity, leads to far-reaching generalizations. Throughout the book, his discussions are packed with applications that include, but reach well beyond, data transmission, with each one introduced as soon as the codes are developed. Although designed as an undergraduate text with myriad exercises, lists of key topics, and chapter summaries, Introduction to Coding Theory explores enough advanced topics to hold equal value as a graduate text and professional reference. Mastering the contents of this book brings a complete understanding of the theory of cyclic codes, including their various applications and the Euclidean algorithm decoding of BCH-codes, and carries readers to the level of the most recent research.

Clustering in Bioinformatics and Drug Discovery

Author: John David MacCuish,Norah E. MacCuish

Publisher: CRC Press

ISBN: 1439816794

Category: Mathematics

Page: 244

View: 3376

DOWNLOAD NOW »
With a DVD of color figures, Clustering in Bioinformatics and Drug Discovery provides an expert guide on extracting the most pertinent information from pharmaceutical and biomedical data. It offers a concise overview of common and recent clustering methods used in bioinformatics and drug discovery. Setting the stage for subsequent material, the first three chapters of the book introduce statistical learning theory, exploratory data analysis, clustering algorithms, different types of data, graph theory, and various clustering forms. In the following chapters on partitional, cluster sampling, and hierarchical algorithms, the book provides readers with enough detail to obtain a basic understanding of cluster analysis for bioinformatics and drug discovery. The remaining chapters cover more advanced methods, such as hybrid and parallel algorithms, as well as details related to specific types of data, including asymmetry, ambiguity, validation measures, and visualization. This book explores the application of cluster analysis in the areas of bioinformatics and cheminformatics as they relate to drug discovery. Clarifying the use and misuse of clustering methods, it helps readers understand the relative merits of these methods and evaluate results so that useful hypotheses can be developed and tested.

Measure and Integral

An Introduction to Real Analysis, Second Edition

Author: Richard L. Wheeden

Publisher: CRC Press

ISBN: 1498702902

Category: Mathematics

Page: 532

View: 8017

DOWNLOAD NOW »
Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content. Published nearly forty years after the first edition, this long-awaited Second Edition also: Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 p Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional case Covers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of Hölder continuous functions and the space of functions of bounded mean oscillation Derives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theorem of calculus in one dimension Extends the subrepresentation formula derived for smooth functions to functions with a weak gradient Applies the norm estimates derived for fractional integral operators to obtain local and global first-order Poincaré–Sobolev inequalities, including endpoint cases Proves the existence of a tangent plane to the graph of a Lipschitz function of several variables Includes many new exercises not present in the first edition This widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.

A First Course in Coding Theory

Author: Raymond Hill

Publisher: Oxford University Press

ISBN: 9780198538035

Category: Technology & Engineering

Page: 251

View: 9861

DOWNLOAD NOW »
Algebraic coding theory is a new and rapidly developing subject, popular for its many practical applications and for its fascinatingly rich mathematical structure. This book provides an elementary yet rigorous introduction to the theory of error-correcting codes. Based on courses given by the author over several years to advanced undergraduates and first-year graduated students, this guide includes a large number of exercises, all with solutions, making the book highly suitable for individual study.

Stochastic Modelling for Systems Biology, Second Edition

Author: Darren J. Wilkinson

Publisher: CRC Press

ISBN: 1439837724

Category: Mathematics

Page: 363

View: 7667

DOWNLOAD NOW »
Since the first edition of Stochastic Modelling for Systems Biology, there have been many interesting developments in the use of "likelihood-free" methods of Bayesian inference for complex stochastic models. Re-written to reflect this modern perspective, this second edition covers everything necessary for a good appreciation of stochastic kinetic modelling of biological networks in the systems biology context. Keeping with the spirit of the first edition, all of the new theory is presented in a very informal and intuitive manner, keeping the text as accessible as possible to the widest possible readership. New in the Second Edition All examples have been updated to Systems Biology Markup Language Level 3 All code relating to simulation, analysis, and inference for stochastic kinetic models has been re-written and re-structured in a more modular way An ancillary website provides links, resources, errata, and up-to-date information on installation and use of the associated R package More background material on the theory of Markov processes and stochastic differential equations, providing more substance for mathematically inclined readers Discussion of some of the more advanced concepts relating to stochastic kinetic models, such as random time change representations, Kolmogorov equations, Fokker-Planck equations and the linear noise approximation Simple modelling of "extrinsic" and "intrinsic" noise An effective introduction to the area of stochastic modelling in computational systems biology, this new edition adds additional mathematical detail and computational methods that will provide a stronger foundation for the development of more advanced courses in stochastic biological modelling.

Introduction to Data Technologies

Author: Paul Murrell

Publisher: CRC Press

ISBN: 9781420065183

Category: Mathematics

Page: 418

View: 3942

DOWNLOAD NOW »
Providing key information on how to work with research data, Introduction to Data Technologies presents ideas and techniques for performing critical, behind-the-scenes tasks that take up so much time and effort yet typically receive little attention in formal education. With a focus on computational tools, the book shows readers how to improve their awareness of what tasks can be achieved and describes the correct approach to perform these tasks. Practical examples demonstrate the most important points The author first discusses how to write computer code using HTML as a concrete example. He then covers a variety of data storage topics, including different file formats, XML, and the structure and design issues of relational databases. After illustrating how to extract data from a relational database using SQL, the book presents tools and techniques for searching, sorting, tabulating, and manipulating data. It also introduces some very basic programming concepts as well as the R language for statistical computing. Each of these topics has supporting chapters that offer reference material on HTML, CSS, XML, DTD, SQL, R, and regular expressions. One-stop shop of introductory computing information Written by a member of the R Development Core Team, this resource shows readers how to apply data technologies to tasks within a research setting. Collecting material otherwise scattered across many books and the web, it explores how to publish information via the web, how to access information stored in different formats, and how to write small programs to automate simple, repetitive tasks.

Linear Algebra and Matrix Analysis for Statistics

Author: Sudipto Banerjee,Anindya Roy

Publisher: CRC Press

ISBN: 1420095382

Category: Mathematics

Page: 580

View: 4047

DOWNLOAD NOW »
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra. The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction. The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.

Mathematics of Quantum Computation and Quantum Technology

Author: Louis Kauffman,Samuel J. Lomonaco

Publisher: CRC Press

ISBN: 9781584889007

Category: Science

Page: 624

View: 8485

DOWNLOAD NOW »
Research and development in the pioneering field of quantum computing involve just about every facet of science and engineering, including the significant areas of mathematics and physics. Based on the firm understanding that mathematics and physics are equal partners in the continuing study of quantum science, Mathematics of Quantum Computation and Quantum Technology explores the rapid mathematical advancements made in this field in recent years. Novel Viewpoints on Numerous Aspects of Quantum Computing and Technology Edited by a well-respected team of experts, this volume compiles contributions from specialists across various disciplines. It contains four main parts, beginning with topics in quantum computing that include quantum algorithms and hidden subgroups, quantum search, algorithmic complexity, and quantum simulation. The next section covers quantum technology, such as mathematical tools, quantum wave functions, superconducting quantum computing interference devices (SQUIDs), and optical quantum computing. The section on quantum information deals with error correction, cryptography, entanglement, and communication. The final part explores topological quantum computation, knot theory, category algebra, and logic. The Tools You Need to Tackle the Next Generation of Quantum Technology This book facilitates both the construction of a common quantum language and the development of interdisciplinary quantum techniques, which will aid efforts in the pursuit of the ultimate goal-a "real" scalable quantum computer.

Introduction to Coding Theory, Second Edition

Author: Jurgen Bierbrauer

Publisher: CRC Press

ISBN: 148229981X

Category: Computers

Page: 538

View: 2845

DOWNLOAD NOW »
This book is designed to be usable as a textbook for an undergraduate course or for an advanced graduate course in coding theory as well as a reference for researchers in discrete mathematics, engineering and theoretical computer science. This second edition has three parts: an elementary introduction to coding, theory and applications of codes, and algebraic curves. The latter part presents a brief introduction to the theory of algebraic curves and its most important applications to coding theory.

Codes and Cryptography

Author: Dominic Welsh

Publisher: Oxford University Press

ISBN: 9780198532873

Category: Ciphers.

Page: 257

View: 5396

DOWNLOAD NOW »
This textbook unifies the concepts of information, codes and cryptography as first considered by Shannon in his seminal papers on communication and secrecy systems. The book has been the basis of a very popular course in Communication Theory which the author has given over several years toundergraduate mathematicians and computer scientists at Oxford. The first five chapters of the book cover the fundamental ideas of information theory, compact encoding of messages, and an introduction to the theory of error-correcting codes. After a discussion of mathematical models of English, there is an introduction to the classical Shannon model ofcryptography. This is followed by a brief survey of those aspects of computational complexity needed for an understanding of modern cryptography, password systems and authentication techniques. Because the aim of the text is to make this exciting branch of modern applied mathematics available to readers with a wide variety of interests and backgrounds, the mathematical prerequisites have been kept to an absolute minimum. In addition to an extensive bibliography there are many exercises(easy) and problems together with solutions.

Analyzing Baseball Data with R

Author: Max Marchi,Jim Albert

Publisher: CRC Press

ISBN: 1315360594

Category: Mathematics

Page: 334

View: 3799

DOWNLOAD NOW »
With its flexible capabilities and open-source platform, R has become a major tool for analyzing detailed, high-quality baseball data. Analyzing Baseball Data with R provides an introduction to R for sabermetricians, baseball enthusiasts, and students interested in exploring the rich sources of baseball data. It equips readers with the necessary skills and software tools to perform all of the analysis steps, from gathering the datasets and entering them in a convenient format to visualizing the data via graphs to performing a statistical analysis. The authors first present an overview of publicly available baseball datasets and a gentle introduction to the type of data structures and exploratory and data management capabilities of R. They also cover the traditional graphics functions in the base package and introduce more sophisticated graphical displays available through the lattice and ggplot2 packages. Much of the book illustrates the use of R through popular sabermetrics topics, including the Pythagorean formula, runs expectancy, career trajectories, simulation of games and seasons, patterns of streaky behavior of players, and fielding measures. Each chapter contains exercises that encourage readers to perform their own analyses using R. All of the datasets and R code used in the text are available online. This book helps readers answer questions about baseball teams, players, and strategy using large, publically available datasets. It offers detailed instructions on downloading the datasets and putting them into formats that simplify data exploration and analysis. Through the book’s various examples, readers will learn about modern sabermetrics and be able to conduct their own baseball analyses.

R Primer, Second Edition

Author: Claus Thorn Ekstrom

Publisher: CRC Press

ISBN: 1351650459

Category: Mathematics

Page: 408

View: 1745

DOWNLOAD NOW »
Newcomers to R are often intimidated by the command-line interface, the vast number of functions and packages, or the processes of importing data and performing a simple statistical analysis. The R Primer provides a collection of concise examples and solutions to R problems frequently encountered by new users of this statistical software. This new edition adds coverage of R Studio and reproducible research.

Algorithms for Next-Generation Sequencing

Author: Wing-Kin Sung

Publisher: CRC Press

ISBN: 1466565519

Category: Mathematics

Page: 364

View: 4577

DOWNLOAD NOW »
Advances in sequencing technology have allowed scientists to study the human genome in greater depth and on a larger scale than ever before – as many as hundreds of millions of short reads in the course of a few days. But what are the best ways to deal with this flood of data? Algorithms for Next-Generation Sequencing is an invaluable tool for students and researchers in bioinformatics and computational biology, biologists seeking to process and manage the data generated by next-generation sequencing, and as a textbook or a self-study resource. In addition to offering an in-depth description of the algorithms for processing sequencing data, it also presents useful case studies describing the applications of this technology.