Fermat's Last Theorem

A Genetic Introduction to Algebraic Number Theory

Author: Harold M. Edwards

Publisher: Springer Science & Business Media

ISBN: 9780387950020

Category: Mathematics

Page: 407

View: 5729

This introduction to algebraic number theory via the famous problem of "Fermats Last Theorem" follows its historical development, beginning with the work of Fermat and ending with Kummers theory of "ideal" factorization. The more elementary topics, such as Eulers proof of the impossibilty of x+y=z, are treated in an uncomplicated way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummers theory to quadratic integers and relates this to Gauss'theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.

Number Theory and Physics

Proceedings of the Winter School, Les Houches, France, March 7–16, 1989

Author: Jean-Marc Luck,Pierre Moussa,Michel Waldschmidt

Publisher: Springer Science & Business Media

ISBN: 3642754058

Category: Science

Page: 311

View: 9632

7 Les Houches Number theory, or arithmetic, sometimes referred to as the queen of mathematics, is often considered as the purest branch of mathematics. It also has the false repu tation of being without any application to other areas of knowledge. Nevertheless, throughout their history, physical and natural sciences have experienced numerous unexpected relationships to number theory. The book entitled Number Theory in Science and Communication, by M.R. Schroeder (Springer Series in Information Sciences, Vol. 7, 1984) provides plenty of examples of cross-fertilization between number theory and a large variety of scientific topics. The most recent developments of theoretical physics have involved more and more questions related to number theory, and in an increasingly direct way. This new trend is especially visible in two broad families of physical problems. The first class, dynamical systems and quasiperiodicity, includes classical and quantum chaos, the stability of orbits in dynamical systems, K.A.M. theory, and problems with "small denominators", as well as the study of incommensurate structures, aperiodic tilings, and quasicrystals. The second class, which includes the string theory of fundamental interactions, completely integrable models, and conformally invariant two-dimensional field theories, seems to involve modular forms and p adic numbers in a remarkable way.

Using the Mathematics Literature

Author: Kristine K. Fowler

Publisher: CRC Press

ISBN: 9780824750350

Category: Language Arts & Disciplines

Page: 475

View: 8379

This reference serves as a reader-friendly guide to every basic tool and skill required in the mathematical library and helps mathematicians find resources in any format in the mathematics literature. It lists a wide range of standard texts, journals, review articles, newsgroups, and Internet and database tools for every major subfield in mathematics and details methods of access to primary literature sources of new research, applications, results, and techniques. Using the Mathematics Literature is the most comprehensive and up-to-date resource on mathematics literature in both print and electronic formats, presenting time-saving strategies for retrieval of the latest information.

A Pythagorean Introduction to Number Theory

Right Triangles, Sums of Squares, and Arithmetic

Author: Ramin Takloo-Bighash

Publisher: Springer

ISBN: 3030026043

Category: Mathematics

Page: 279

View: 5737

Right triangles are at the heart of this textbook’s vibrant new approach to elementary number theory. Inspired by the familiar Pythagorean theorem, the author invites the reader to ask natural arithmetic questions about right triangles, then proceeds to develop the theory needed to respond. Throughout, students are encouraged to engage with the material by posing questions, working through exercises, using technology, and learning about the broader context in which ideas developed. Progressing from the fundamentals of number theory through to Gauss sums and quadratic reciprocity, the first part of this text presents an innovative first course in elementary number theory. The advanced topics that follow, such as counting lattice points and the four squares theorem, offer a variety of options for extension, or a higher-level course; the breadth and modularity of the later material is ideal for creating a senior capstone course. Numerous exercises are included throughout, many of which are designed for SageMath. By involving students in the active process of inquiry and investigation, this textbook imbues the foundations of number theory with insights into the lively mathematical process that continues to advance the field today. Experience writing proofs is the only formal prerequisite for the book, while a background in basic real analysis will enrich the reader’s appreciation of the final chapters.


Neu herausgegeben von Alexander Schmidt

Author: Jürgen Neukirch

Publisher: Springer-Verlag

ISBN: 364217325X

Category: Mathematics

Page: 204

View: 1334

Der Klassiker zum Thema bietet Lesern, die mit den Grundlagen der algebraischen Zahlentheorie vertraut sind, einen raschen Zugang zur Klassenkörpertheorie. Die Neuauflage ist eine verbesserte Version des 1969 in der Reihe B. I.-Hochschulskripten (Bibliographisches Institut Mannheim) erschienenen gleichnamigen Bandes. Das Werk besteht aus drei Teilen: Im ersten wird die Kohomologie der endlichen Gruppen behandelt, im zweiten die lokale Klassenkörpertheorie, der dritte Teil widmet sich der Klassenkörpertheorie der endlichen algebraischen Zahlkörper.

Publicationes Mathematicae

Author: Kossuth Lajos Tudományegyetem. Matematikai Intézet,Alfréd Rényi,Tibor Szele,Otto Varga

Publisher: N.A


Category: Mathematics

Page: N.A

View: 6612


Was ist Mathematik?

Author: Richard Courant,Herbert Robbins

Publisher: Springer-Verlag

ISBN: 3642137016

Category: Mathematics

Page: 400

View: 8450

"Was ist Mathematik?" lädt jeden ein, das Reich der Mathematik zu betreten, der neugierig genug ist, sich auf ein Abenteuer einzulassen. Das Buch richtet sich an Leser jeden Alters und jeder Vorbildung. Gymnasiallehrer erhalten eine Fülle von Beispielen, Studenten bietet es Orientierung, und Dozenten werden sich an den Feinheiten der Darstellung zweier Meister ihres Faches erfreuen.

Introduction to cyclotomic fields

Author: Lawrence C. Washington

Publisher: Springer Verlag


Category: Mathematics

Page: 389

View: 2054

Introduction to Cyclotomic Fields is a carefully written exposition of a central area of number theory that can be used as a second course in algebraic number theory. Starting at an elementary level, the volume covers p-adic L-functions, class numbers, cyclotomic units, Fermat's Last Theorem, and Iwasawa's theory of Z_p-extensions, leading the reader to an understanding of modern research literature. Many exercises are included. The second edition includes a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture. There is also a chapter giving other recent developments, including primality testing via Jacobi sums and Sinnott's proof of the vanishing of Iwasawa's f-invariant.

Fermats letzter Satz

die abenteuerliche Geschichte eines mathematischen Rätsels

Author: Simon Singh

Publisher: N.A

ISBN: 9783423330527

Category: Fermat's last theorem

Page: 364

View: 6048


Von Fermat bis Minkowski

Eine Vorlesung über Zahlentheorie und ihre Entwicklung

Author: W. Scharlau,H. Opolka

Publisher: Springer-Verlag

ISBN: 3642618499

Category: Mathematics

Page: 226

View: 3060


Meine Zahlen, meine Freunde

Glanzlichter der Zahlentheorie

Author: Paulo Ribenboim

Publisher: Springer-Verlag

ISBN: 3540879579

Category: Mathematics

Page: 391

View: 6976

Paulo Ribenboim behandelt Zahlen in dieser außergewöhnlichen Sammlung von Übersichtsartikeln wie seine persönlichen Freunde. In leichter und allgemein zugänglicher Sprache berichtet er über Primzahlen, Fibonacci-Zahlen (und das Nordpolarmeer!), die klassischen Arbeiten von Gauß über binäre quadratische Formen, Eulers berühmtes primzahlerzeugendes Polynom, irrationale und transzendente Zahlen. Nach dem großen Erfolg von „Die Welt der Primzahlen" ist dies das zweite Buch von Paulo Ribenboim, das in deutscher Sprache erscheint.