Finite Element Methods:

Parallel-Sparse Statics and Eigen-Solutions

Author: Duc Thai Nguyen

Publisher: Springer Science & Business Media

ISBN: 9780387293301

Category: Mathematics

Page: 534

View: 5965

DOWNLOAD NOW »
Finite element methods (FEM), and its associated computer software have been widely accepted as one of the most effective general tools for solving large-scale, practical engineering and science applications. For implicit finite element codes, it is a well-known fact that efficient equation and eigen-solvers play critical roles in solving large-scale, practical engineering/science problems. Sparse matrix technologies have been evolved and become mature enough that all popular, commercialized FEM codes have already inserted sparse solvers into their software. However, a few FEM books have detailed discussions about Lanczos eigen-solvers, or explain domain decomposition (DD) finite element formulation (including detailed hand-calculator numerical examples) for parallel computing purposes. The materials from this book have been evolved over the past several years through the author's research work, and graduate courses.

Parallel-Vector Equation Solvers for Finite Element Engineering Applications

Author: Duc T. Nguyen

Publisher: Springer Science & Business Media

ISBN: 9780306466403

Category: Computers

Page: 344

View: 531

DOWNLOAD NOW »
Despite the ample number of articles on parallel-vector computational algorithms published over the last 20 years, there is a lack of texts in the field customized for senior undergraduate and graduate engineering research. Parallel-Vector Equation Solvers for Finite Element Engineering Applications aims to fill this gap, detailing both the theoretical development and important implementations of equation-solution algorithms. The mathematical background necessary to understand their inception balances well with descriptions of their practical uses. Illustrated with a number of state-of-the-art FORTRAN codes developed as examples for the book, Dr. Nguyen's text is a perfect choice for instructors and researchers alike.

Handbook of Parallel Computing and Statistics

Author: Erricos John Kontoghiorghes

Publisher: CRC Press

ISBN: 9781420028683

Category: Mathematics

Page: 552

View: 9296

DOWNLOAD NOW »
Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts, such as grid computing and massively parallel supercomputers. The Handbook of Parallel Computing and Statistics systematically applies the principles of parallel computing for solving increasingly complex problems in statistics research. This unique reference weaves together the principles and theoretical models of parallel computing with the design, analysis, and application of algorithms for solving statistical problems. After a brief introduction to parallel computing, the book explores the architecture, programming, and computational aspects of parallel processing. Focus then turns to optimization methods followed by statistical applications. These applications include algorithms for predictive modeling, adaptive design, real-time estimation of higher-order moments and cumulants, data mining, econometrics, and Bayesian computation. Expert contributors summarize recent results and explore new directions in these areas. Its intricate combination of theory and practical applications makes the Handbook of Parallel Computing and Statistics an ideal companion for helping solve the abundance of computation-intensive statistical problems arising in a variety of fields.

Nichtlineare Finite-Element-Methoden

Author: Peter Wriggers

Publisher: Springer-Verlag

ISBN: 3642568653

Category: Technology & Engineering

Page: 496

View: 1372

DOWNLOAD NOW »
Die Anwendung der Finite-Element-Methode auf nichtlineare technische Probleme hat in den letzten Jahren - auch wegen der stark angestiegenen Rechnerleistung - erheblich zugenommen. Bei nichtlinearen numerischen Simulationen sind verschiedene Aspekte zu berücksichtigen, die das Wissen und Verstehen der theoretischen Grundlagen, der zugehörigen Elementformulierungen sowie der Algorithmen zur Lösung der nichtlinearen Gleichungen voraussetzen. Hierzu soll dieses Buch beitragen, wobei die Bandbreite nichtlinearer Finite-Element-Analysen im Bereich der Festkörpermechanik abgedeckt wird. Das Buch wendet sich an Studierende des Ingenieurwesens im Hauptstudium, an Doktoranden aber auch an praktisch tätige Ingenieure, die Hintergrundwissen im Bereich der Finite-Element-Methode erlangen möchten.

Mechanical Vibrations

Theory and Application to Structural Dynamics

Author: Michel Geradin,Daniel J. Rixen

Publisher: John Wiley & Sons

ISBN: 1118900200

Category: Science

Page: 592

View: 8485

DOWNLOAD NOW »

Parallel computational methods for large-scale structural analysis and design

papers presented at the 2nd Symposium on Parallel Computational Methods for Large-Scale Structural Analysis and Design : held 24-25 February 1993, Marriott Waterside Hotel, Norfolk, VA, U.S.A.

Author: Olaf O. Storaasli,Jerrold M. Housner,Duc T. Nguyen,Langley Research Center,Lewis Research Center

Publisher: N.A

ISBN: N.A

Category: Parallel processing (Electronic Computers)

Page: 194

View: 5784

DOWNLOAD NOW »

Computational Science -- ICCS 2005

5th International Conference, Atlanta, GA, USA, May 22-25, 2005, Proceedings

Author: V.S. Sunderam,G. Dick van Albada,Peter M.A. Sloot,J. J. Dongarra

Publisher: Springer Science & Business Media

ISBN: 3540260323

Category: Computers

Page: 1089

View: 8972

DOWNLOAD NOW »
The three-volume set LNCS 3514-3516 constitutes the refereed proceedings of the 5th International Conference on Computational Science, ICCS 2005, held in Atlanta, GA, USA in May 2005. The 464 papers presented were carefully reviewed and selected from a total of 834 submissions for the main conference and its 21 topical workshops. The papers span the whole range of computational science, ranging from numerical methods, algorithms, and computational kernels to programming environments, grids, networking, and tools. These fundamental contributions dealing with computer science methodologies and techniques are complemented by papers discussing computational applications and needs in virtually all scientific disciplines applying advanced computational methods and tools to achieve new discoveries with greater accuracy and speed.

Numerische Behandlung partieller Differentialgleichungen

Author: Christian Großmann,Hans-Görg Roos

Publisher: Springer-Verlag

ISBN: 9783519220893

Category: Mathematics

Page: 572

View: 1008

DOWNLOAD NOW »
Mathematiker, Naturwissenschaftler und Ingenieure erhalten mit diesem Lehrbuch eine Einführung in die numerische Behandlung partieller Differentialgleichungen. Diskutiert werden die grundlegenden Verfahren - Finite Differenzen, Finite Volumen und Finite Elemente - für die wesentlichen Typen partieller Differentialgleichungen: elliptische, parabolische und hyperbolische Gleichungen. Einbezogen werden auch moderne Methoden zur Lösung der diskreten Probleme. Hinweise auf aktuelle Software sowie zahlreiche Beispiele und Übungsaufgaben runden diese Einführung ab.

Eindimensionale Finite Elemente

Ein Einstieg in die Methode

Author: Markus Merkel,Andreas Öchsner

Publisher: Springer-Verlag

ISBN: 3642544827

Category: Science

Page: 428

View: 3287

DOWNLOAD NOW »
Die Finite-Elemente-Methode wird in dieser Einführung in ihrer Komplexität auf eindimensionale Elemente heruntergebrochen. Somit bleibt die mathematische Beschreibung weitgehend einfach und überschaubar. Das Augenmerk liegt in jedem Kapitel auf der Erläuterung der Methode und deren Verständnis. Der Leser lernt, die Annahmen und Ableitungen bei verschiedenen physikalischen Problemstellungen in der Strukturmechanik zu verstehen und Möglichkeiten und Grenzen der Methode der Finiten Elemente kritisch zu beurteilen. Diese Herangehensweise ermöglicht das methodische Verständnis wichtiger Themenbereiche, wie z.B. Plastizität oder Verbundwerkstoffe und gewährleistet einen einfachen Einstieg in weiterführende Anwendungsgebiete. Ausführliche durchgerechnete und kommentierte Beispiele und weiterführende Aufgaben mit Kurzlösung im Anhang unterstützen den Lernerfolg. In der zweiten Auflage dieses Lehrbuches wurden alle graphischen Darstellungen überarbeitet, die Wärmeleitung bei den Stabelementen ergänzt und Spezialelemente als neues Kapitel aufgenommen. Auch wurde das Prinzip der virtuellen Arbeiten zur Ableitung der Finite-Elemente-Hauptgleichung eingeführt.

Matrix-Based Multigrid

Theory and Applications

Author: Yair Shapira

Publisher: Springer Science & Business Media

ISBN: 1475737262

Category: Mathematics

Page: 221

View: 8240

DOWNLOAD NOW »
Many important problems in applied science and engineering, such as the Navier Stokes equations in fluid dynamics, the primitive equations in global climate mod eling, the strain-stress equations in mechanics, the neutron diffusion equations in nuclear engineering, and MRIICT medical simulations, involve complicated sys tems of nonlinear partial differential equations. When discretized, such problems produce extremely large, nonlinear systems of equations, whose numerical solution is prohibitively costly in terms of time and storage. High-performance (parallel) computers and efficient (parallelizable) algorithms are clearly necessary. Three classical approaches to the solution of such systems are: Newton's method, Preconditioned Conjugate Gradients (and related Krylov-space acceleration tech niques), and multigrid methods. The first two approaches require the solution of large sparse linear systems at every iteration, which are themselves often solved by multigrid methods. Developing robust and efficient multigrid algorithms is thus of great importance. The original multigrid algorithm was developed for the Poisson equation in a square, discretized by finite differences on a uniform grid. For this model problem, multigrid exhibits extremely rapid convergence, and actually solves the problem in the minimal possible time. The original algorithm uses rediscretization of the partial differential equation (POE) on each grid in the hierarchy of coarse grids that are used. However, this approach would not work for more complicated problems, such as problems on complicated domains and nonuniform grids, problems with variable coefficients, and non symmetric and indefinite equations. In these cases, matrix-based multi grid methods are in order.