Floer Homology Groups in Yang-Mills Theory

Author: S. K. Donaldson

Publisher: Cambridge University Press

ISBN: 9781139432603

Category: Mathematics

Page: 236

View: 5802

DOWNLOAD NOW »
The concept of Floer homology was one of the most striking developments in differential geometry. It yields rigorously defined invariants which can be viewed as homology groups of infinite-dimensional cycles. The ideas led to great advances in the areas of low-dimensional topology and symplectic geometry and are intimately related to developments in Quantum Field Theory. The first half of this book gives a thorough account of Floer's construction in the context of gauge theory over 3 and 4-dimensional manifolds. The second half works out some further technical developments of the theory, and the final chapter outlines some research developments for the future - including a discussion of the appearance of modular forms in the theory. The scope of the material in this book means that it will appeal to graduate students as well as those on the frontiers of the subject.

Perspectives in Analysis, Geometry, and Topology

On the Occasion of the 60th Birthday of Oleg Viro

Author: Ilia Itenberg,Burglind Jöricke,Mikael Passare

Publisher: Springer Science & Business Media

ISBN: 0817682775

Category: Mathematics

Page: 464

View: 332

DOWNLOAD NOW »
The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.

A Morse-Bott Approach to Monopole Floer Homology and the Triangulation Conjecture

Author: Francesco Lin

Publisher: American Mathematical Soc.

ISBN: 1470429632

Category: Floer homology

Page: 162

View: 7770

DOWNLOAD NOW »
In the present work the author generalizes the construction of monopole Floer homology due to Kronheimer and Mrowka to the case of a gradient flow with Morse-Bott singularities. Focusing then on the special case of a three-manifold equipped equipped with a structure which is isomorphic to its conjugate, the author defines the counterpart in this context of Manolescu's recent Pin(2)-equivariant Seiberg-Witten-Floer homology. In particular, the author provides an alternative approach to his disproof of the celebrated Triangulation conjecture.

Introduction to Symplectic Topology

Author: Dusa McDuff,Dietmar Salamon

Publisher: Oxford University Press

ISBN: 0192514016

Category: Mathematics

Page: 632

View: 6604

DOWNLOAD NOW »
Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.

The Lévy Laplacian

Author: M. N. Feller

Publisher: Cambridge University Press

ISBN: 9781139447966

Category: Mathematics

Page: N.A

View: 8369

DOWNLOAD NOW »
The Lévy Laplacian is an infinite-dimensional generalization of the well-known classical Laplacian. The theory has become well developed in recent years and this book was the first systematic treatment of the Lévy–Laplace operator. The book describes the infinite-dimensional analogues of finite-dimensional results, and more especially those features which appear only in the generalized context. It develops a theory of operators generated by the Lévy Laplacian and the symmetrized Lévy Laplacian, as well as a theory of linear and nonlinear equations involving it. There are many problems leading to equations with Lévy Laplacians and to Lévy–Laplace operators, for example superconductivity theory, the theory of control systems, the Gauss random field theory, and the Yang–Mills equation. The book is complemented by an exhaustive bibliography. The result is a work that will be valued by those working in functional analysis, partial differential equations and probability theory.

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 5437

DOWNLOAD NOW »
Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

1089 oder das Wunder der Zahlen

eine Reise in die Welt der Mathematik

Author: David J. Acheson

Publisher: N.A

ISBN: 9783866470200

Category:

Page: 189

View: 5473

DOWNLOAD NOW »
Das Buch beginnt mit einem alten Zaubertrick - Man nehme eine 3-stellige Zahl, etwa 782, kehre sie um, ziehe die kleinere von der größeren ab und addiere dazu die Umkehrung. Also - 782 - 287 = 495, dann 495 + 594. Und schon ist man mitten in der Wunderwelt der Mathematik, denn das Ergebnis ist immer - 1089. Mit solchen und vielen weiteren Beispielen aus Alltag, Geschichte und Wissenschaft gelingt es David Acheson, die faszinierende Welt der Mathematik zu erschließen - ein geistreicher Überblick, eine für jeden verständliche Einführung.

Gewinnen Strategien für mathematische Spiele

Band 4 Solitairspiele

Author: Elwyn R. Berlekamp,John H. Conway,Richard K. Guy

Publisher: Springer-Verlag

ISBN: 3322831736

Category: Technology & Engineering

Page: 159

View: 4411

DOWNLOAD NOW »
Der vierte Band ,,Solitairspiele" behandelt Ein-Personen-Spiele mit Ausnahme von Schach, Go etc. Ein Hauptteil ist dem berühmten ,,Game of Life" gewidmet.

Proceedings of the International Congress of Mathematicians

Madrid, August 22-30, 2006

Author: Marta Sanz Solé

Publisher: Amer Mathematical Society

ISBN: 9783037190227

Category: Mathematics

Page: 4500

View: 9948

DOWNLOAD NOW »
The International Congress of Mathematicians (ICM) is held every four years. It is a major scientific event, bringing together mathematicians from all over the world and demonstrating the vital role that mathematics play in our society. In particular, the Fields Medals are awarded to recognize outstanding mathematical achievement. At the same time, the International Mathematical Union awards the Nevanlinna Prize for work in the field of theoretical computer science. The proceedings of ICM 2006, published as a three-volume set, present an overview of current research in all areas of mathematics and provide a permanent record the congress. The first volume features the works of Fields Medallists and the Nevanlinna Prize winner, the plenary lectures, and the speeches and pictures of the opening and closing ceremonies and award sessions. The other two volumes present the invited lectures, arranged according to their mathematical subject. Information for our distributors: Distributed within the Americas by the American Mathematical Society. All commerical channel discounts apply.

Geometry & Topology

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Geometry

Page: N.A

View: 3832

DOWNLOAD NOW »
Fully refereed international journal dealing with all aspects of geometry and topology and their applications.

Regular Solids and Isolated Singularities

Author: Klaus Lamotke

Publisher: Vieweg+Teubner Verlag

ISBN: 9783528089580

Category: Mathematics

Page: 224

View: 4973

DOWNLOAD NOW »
The last book XIII of Euclid's Elements deals with the regular solids which therefore are sometimes considered as crown of classical geometry. More than two thousand years later around 1850 Schl~fli extended the classification of regular solids to four and more dimensions. A few decades later, thanks to the invention of group and invariant theory the old three dimensional regular solid were involved in the development of new mathematical ideas: F. Klein (Lectures on the Icosa hedron and the Resolution of Equations of Degree Five, 1884) emphasized the relation of the regular solids to the finite rotation groups. He introduced complex coordinates and by means of invariant theory associated polynomial equations with these groups. These equations in turn describe isolated singularities of complex surfaces. The structure of the singularities is investigated by methods of commutative algebra, algebraic and complex analytic geometry, differential and algebraic topology. A paper by DuVal from 1934 (see the References), in which resolutions play an important rele, marked an early stage of these investigations. Around 1970 Klein's polynomials were again related to new mathematical ideas: V. I. Arnold established a hierarchy of critical points of functions in several variables according to growing com plexity. In this hierarchy Kleinls polynomials describe the "simple" critical points.

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik

Author: Detlef Laugwitz

Publisher: Springer-Verlag

ISBN: 3034889836

Category: Mathematics

Page: 348

View: 6284

DOWNLOAD NOW »
Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."