The Foundations of Geometry and the Non-Euclidean Plane

Author: G.E. Martin

Publisher: Springer Science & Business Media

ISBN: 9780387906942

Category: Mathematics

Page: 512

View: 5986

This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.

David Hilbert’s Lectures on the Foundations of Geometry 1891–1902

Author: Michael Hallett,Ulrich Majer

Publisher: Springer Science & Business Media

ISBN: 9783540643739

Category: Mathematics

Page: 661

View: 7752

This volume contains six sets of notes for lectures on the foundations of geometry held by Hilbert in the period 1891-1902. It also reprints the first edition of Hilbert’s celebrated Grundlagen der Geometrie of 1899, together with the important additions which appeared first in the French translation of 1900. The lectures document the emergence of a new approach to foundational study and contain many reflections and investigations which never found their way into print.

An Essay on the Foundations of Geometry

Author: Bertrand Russell

Publisher: Cosimo, Inc.

ISBN: 1602063095

Category: Mathematics

Page: 220

View: 2674

Bertrand Russell was a prolific writer, revolutionizing philosophy and doing extensive work in the study of logic. This, his first book on mathematics, was originally published in 1897 and later rejected by the author himself because it was unable to support Einstein's work in physics. This evolution makes An Essay on the Foundations of Geometry invaluable in understanding the progression of Russell's philosophical thinking. Despite his rejection of it, Essays continues to be a great work in logic and history, providing readers with an explanation for how Euclidean geometry was replaced by more advanced forms of math. British philosopher and mathematician BERTRAND ARTHUR WILLIAM RUSSELL (1872-1970) won the Nobel Prize for Literature in 1950. Among his many works are Why I Am Not a Christian (1927), Power: A New Social Analysis (1938), and My Philosophical Development (1959).

Foundations of Geometry

Author: Gerard Venema

Publisher: Addison-Wesley Longman

ISBN: 9780136020585

Category: Mathematics

Page: 389

View: 9972

Foundations of Geometry, Second Edition is written to help enrich the education of all mathematics majors and facilitate a smooth transition into more advanced mathematics courses. The text also implements the latest national standards and recommendations regarding geometry for the preparation of high school mathematics teachers--and encourages students to make connections between their college courses and classes they will later teach. This text's coverage begins with Euclid's Elements, lays out a system of axioms for geometry, and then moves on to neutral geometry, Euclidian and hyperbolic geometries from an axiomatic point of view, and then non-Euclidean geometry. Good proof-writing skills are emphasized, along with a historical development of geometry. The Second Edition streamlines and reorganizes material in order to reach coverage of neutral geometry as early as possible, adds more exercises throughout, and facilitates use of the open-source software Geogebra. This text is ideal for an undergraduate course in axiomatic geometry for future high school geometry teachers, or for any student who has not yet encountered upper-level math, such as real analysis or abstract algebra. It assumes calculus and linear algebra as prerequisites.

Grundlagen der Geometrie

Author: David Hilbert

Publisher: SEVERUS Verlag

ISBN: 3863479467

Category: Mathematics

Page: 248

View: 1667

Seine Erkenntnisse beeinflussen bis heute die Forschung: David Hilbert baut in seinen „Grundlagen der Geometrie“ auf Euklids Lehre ein Grundsatzsystem auf, von dem ausgehend er wichtige geometrische Sätze ableitet. Die erstmals 1899 erschienene Abhandlung machte Hilbert zu einem der wichtigsten Mathematiker der Neuzeit, der auch den Formalismus entscheidend prägte.

An Essay on the Foundations of Modern Geometry

Author: Bertrand Russell

Publisher: Courier Corporation

ISBN: 9780486495552

Category: Mathematics

Page: 224

View: 1045

The author, a Nobel Laureate and one of the 20th century's most important logicians, asks and answers basic questions about the intersection of philosophy and higher mathematics. 1897 edition.

Foundations of Three-Dimensional Euclidean Geometry

Author: I. Vaisman

Publisher: CRC Press

ISBN: 9780824769017

Category: Mathematics

Page: 288

View: 8830

Foundations of Three-Dimensional Euclidean Geometry provides a modern axiomatic construction of three-dimensional geometry, in an accessible form. The method of this book is a graduated formulation of axioms, such that, by determining all the geometric spaces which satisfy the considered axioms, one may characterize the Euclidean space up to an isomorphism. A special feature of Foundations of Three-Dimensional Euclidean Geometry is the introduction of the parallel axiom at an early stage of the discussion, so that the reader can see what results may be obtained both with and without this important axiom. The many theorems, drawings, exercises, and problems richly enhance the presentation of material. Foundations of Three-Dimensional Euclidean Geometry is suitable as a textbook for a one- or two-semester course on geometry or foundations of geometry for undergraduate and beginning graduate students. Mathematics majors in M.A.T. programs will find that this exposition of a classical subject will contribute greatly to their ability to teach geometry at all levels; and logicians, philosophers, and engineers will benefit from this book's applications to their own interests. Book jacket.

Foundations of Geometry

Author: CTI Reviews

Publisher: Cram101 Textbook Reviews

ISBN: 1497033764

Category: Education

Page: 41

View: 9455

Facts101 is your complete guide to Foundations of Geometry. In this book, you will learn topics such as Axioms for Plane Geometry, Neutral Geometry, Euclidean Geometry, and Hyperbolic Geometry plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Algebraical and Topological Foundations of Geometry

Proceedings of a Colloquium Held in Utrecht, August 1959

Author: Hans Freudenthal

Publisher: Elsevier

ISBN: 1483184641

Category: Mathematics

Page: 216

View: 1097

Algebraical and Topological Foundations of Geometry contains the proceedings of the Colloquium on Algebraic and Topological Foundations of Geometry, held in Utrecht, the Netherlands in August 1959. The papers review the algebraical and topological foundations of geometry and cover topics ranging from the geometric algebra of the Möbius plane to the theory of parallels with applications to closed geodesies. Groups of homeomorphisms and topological descriptive planes are also discussed. Comprised of 26 chapters, this book introduces the reader to the theory of parallels with applications to closed geodesies; groups of homeomorphisms; complemented modular lattices; and topological descriptive planes. Subsequent chapters focus on collineation groups; exceptional algebras and exceptional groups; the connection between algebra and constructions with ruler and compasses; and the use of differential geometry and analytic group theory methods in foundations of geometry. Von Staudt projectivities of Moufang planes are also considered, and an axiomatic treatment of polar geometry is presented. This monograph will be of interest to students of mathematics.

Foundations of Incidence Geometry

Projective and Polar Spaces

Author: Johannes Ueberberg

Publisher: Springer Science & Business Media

ISBN: 3642209726

Category: Mathematics

Page: 248

View: 6247

Incidence geometry is a central part of modern mathematics that has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader.

Foundations of Algebraic Geometry

Author: AndrŽ Weil

Publisher: American Mathematical Soc.

ISBN: 0821810294

Category: Mathematics

Page: 363

View: 2750

This classic is one of the cornerstones of modern algebraic geometry. At the same time, it is entirely self-contained, assuming no knowledge whatsoever of algebraic geometry, and no knowledge of modern algebra beyond the simplest facts about abstract fields and their extensions, and the bare rudiments of the theory of ideals.

Foundations of Geometric Algebra Computing

Author: Dietmar Hildenbrand

Publisher: Springer Science & Business Media

ISBN: 3642317944

Category: Computers

Page: 196

View: 9203

The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.

Foundations of Convex Geometry

Author: W. A. Coppel

Publisher: Cambridge University Press

ISBN: 9780521639705

Category: Mathematics

Page: 222

View: 3012

This book on the foundations of Euclidean geometry aims to present the subject from the point of view of present day mathematics, taking advantage of all the developments since the appearance of Hilbert's classic work. Here real affine space is characterised by a small number of axioms involving points and line segments making the treatment self-contained and thorough, many results being established under weaker hypotheses than usual. The treatment should be totally accessible for final year undergraduates and graduate students, and can also serve as an introduction to other areas of mathematics such as matroids and antimatroids, combinatorial convexity, the theory of polytopes, projective geometry and functional analysis.

Foundations of Hyperbolic Manifolds

Author: John Ratcliffe

Publisher: Springer Science & Business Media

ISBN: 0387331972

Category: Mathematics

Page: 782

View: 9340

This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.

Philosophy of Geometry from Riemann to Poincaré

Author: R. Torretti

Publisher: Taylor & Francis

ISBN: 9789027709202

Category: History

Page: 459

View: 7995

Geometry has fascinated philosophers since the days of Thales and Pythagoras. In the 17th and 18th centuries it provided a paradigm of knowledge after which some thinkers tried to pattern their own metaphysical systems. But after the discovery of non-Euclidean geometries in the 19th century, the nature and scope of geometry became a bone of contention. Philosophical concern with geometry increased in the 1920's after Einstein used Riemannian geometry in his theory of gravitation. During the last fifteen or twenty years, renewed interest in the latter theory -prompted by advances in cosmology -has brought geometry once again to the forefront of philosophical discussion. The issues at stake in the current epistemological debate about geometry can only be understood in the light of history, and, in fact, most recent works on the subject include historical material. In this book, I try to give a selective critical survey of modern philosophy of geometry during its seminal period, which can be said to have begun shortly after 1850 with Riemann's generalized conception of space and to achieve some sort of completion at the turn of the century with Hilbert's axiomatics and Poincare's conventionalism. The philosophy of geometry of Einstein and his contemporaries will be the subject of another book. The book is divided into four chapters. Chapter 1 provides back ground information about the history of science and philosophy.

Foundations of Differential Geometry

Author: Shoshichi Kobayashi,Katsumi Nomizu

Publisher: University of Texas Press

ISBN: 9780471157328

Category: Mathematics

Page: 488

View: 2409

One of two volumes which lay the foundations for understanding differential geometry. This work familiarizes readers with various techniques of computation.