The Foundations of Geometry and the Non-Euclidean Plane

Author: G.E. Martin

Publisher: Springer Science & Business Media

ISBN: 9780387906942

Category: Mathematics

Page: 512

View: 8988

This book is a text for junior, senior, or first-year graduate courses traditionally titled Foundations of Geometry and/or Non Euclidean Geometry. The first 29 chapters are for a semester or year course on the foundations of geometry. The remaining chap ters may then be used for either a regular course or independent study courses. Another possibility, which is also especially suited for in-service teachers of high school geometry, is to survey the the fundamentals of absolute geometry (Chapters 1 -20) very quickly and begin earnest study with the theory of parallels and isometries (Chapters 21 -30). The text is self-contained, except that the elementary calculus is assumed for some parts of the material on advanced hyperbolic geometry (Chapters 31 -34). There are over 650 exercises, 30 of which are 10-part true-or-false questions. A rigorous ruler-and-protractor axiomatic development of the Euclidean and hyperbolic planes, including the classification of the isometries of these planes, is balanced by the discussion about this development. Models, such as Taxicab Geometry, are used exten sively to illustrate theory. Historical aspects and alternatives to the selected axioms are prominent. The classical axiom systems of Euclid and Hilbert are discussed, as are axiom systems for three and four-dimensional absolute geometry and Pieri's system based on rigid motions. The text is divided into three parts. The Introduction (Chapters 1 -4) is to be read as quickly as possible and then used for ref erence if necessary.

David Hilbert’s Lectures on the Foundations of Geometry 1891–1902

Author: Michael Hallett,Ulrich Majer

Publisher: Springer Science & Business Media

ISBN: 9783540643739

Category: Mathematics

Page: 661

View: 5336

This volume contains six sets of notes for lectures on the foundations of geometry held by Hilbert in the period 1891-1902. It also reprints the first edition of Hilbert’s celebrated Grundlagen der Geometrie of 1899, together with the important additions which appeared first in the French translation of 1900. The lectures document the emergence of a new approach to foundational study and contain many reflections and investigations which never found their way into print.

An Essay on the Foundations of Geometry

Author: Bertrand Russell

Publisher: Cosimo, Inc.

ISBN: 1602063095

Category: Mathematics

Page: 220

View: 3312

Bertrand Russell was a prolific writer, revolutionizing philosophy and doing extensive work in the study of logic. This, his first book on mathematics, was originally published in 1897 and later rejected by the author himself because it was unable to support Einstein's work in physics. This evolution makes An Essay on the Foundations of Geometry invaluable in understanding the progression of Russell's philosophical thinking. Despite his rejection of it, Essays continues to be a great work in logic and history, providing readers with an explanation for how Euclidean geometry was replaced by more advanced forms of math. British philosopher and mathematician BERTRAND ARTHUR WILLIAM RUSSELL (1872-1970) won the Nobel Prize for Literature in 1950. Among his many works are Why I Am Not a Christian (1927), Power: A New Social Analysis (1938), and My Philosophical Development (1959).

The Foundations of Geometry

Author: Gerard Venema

Publisher: Prentice Hall

ISBN: 9780131437005

Category: Mathematics

Page: 432

View: 3573

This text comfortably serves as a bridge between lower-level mathematics courses (calculus and linear algebra) and upper-level courses (real analysis and abstract algebra). It fully implements the latest national standards and recommendations regarding geometry for the preparation of high school mathematics teachers. Foundations of Geometry particularly teaches good proof-writing skills, emphasises the historical development of geometry, and addresses certain issues concerning the place of geometry in human culture.

Foundations of Geometry

Author: Gerard Venema

Publisher: Addison-Wesley Longman

ISBN: 9780136020585

Category: Mathematics

Page: 389

View: 5351

Foundations of Geometry, Second Edition is written to help enrich the education of all mathematics majors and facilitate a smooth transition into more advanced mathematics courses. The text also implements the latest national standards and recommendations regarding geometry for the preparation of high school mathematics teachers--and encourages students to make connections between their college courses and classes they will later teach. This text's coverage begins with Euclid's Elements, lays out a system of axioms for geometry, and then moves on to neutral geometry, Euclidian and hyperbolic geometries from an axiomatic point of view, and then non-Euclidean geometry. Good proof-writing skills are emphasized, along with a historical development of geometry. The Second Edition streamlines and reorganizes material in order to reach coverage of neutral geometry as early as possible, adds more exercises throughout, and facilitates use of the open-source software Geogebra. This text is ideal for an undergraduate course in axiomatic geometry for future high school geometry teachers, or for any student who has not yet encountered upper-level math, such as real analysis or abstract algebra. It assumes calculus and linear algebra as prerequisites.

Foundations of Three-Dimensional Euclidean Geometry

Author: I. Vaisman

Publisher: CRC Press

ISBN: 9780824769017

Category: Mathematics

Page: 288

View: 1496

Foundations of Three-Dimensional Euclidean Geometry provides a modern axiomatic construction of three-dimensional geometry, in an accessible form. The method of this book is a graduated formulation of axioms, such that, by determining all the geometric spaces which satisfy the considered axioms, one may characterize the Euclidean space up to an isomorphism. A special feature of Foundations of Three-Dimensional Euclidean Geometry is the introduction of the parallel axiom at an early stage of the discussion, so that the reader can see what results may be obtained both with and without this important axiom. The many theorems, drawings, exercises, and problems richly enhance the presentation of material. Foundations of Three-Dimensional Euclidean Geometry is suitable as a textbook for a one- or two-semester course on geometry or foundations of geometry for undergraduate and beginning graduate students. Mathematics majors in M.A.T. programs will find that this exposition of a classical subject will contribute greatly to their ability to teach geometry at all levels; and logicians, philosophers, and engineers will benefit from this book's applications to their own interests. Book jacket.

Foundations of Geometric Algebra Computing

Author: Dietmar Hildenbrand

Publisher: Springer Science & Business Media

ISBN: 3642317944

Category: Computers

Page: 196

View: 5566

The author defines “Geometric Algebra Computing” as the geometrically intuitive development of algorithms using geometric algebra with a focus on their efficient implementation, and the goal of this book is to lay the foundations for the widespread use of geometric algebra as a powerful, intuitive mathematical language for engineering applications in academia and industry. The related technology is driven by the invention of conformal geometric algebra as a 5D extension of the 4D projective geometric algebra and by the recent progress in parallel processing, and with the specific conformal geometric algebra there is a growing community in recent years applying geometric algebra to applications in computer vision, computer graphics, and robotics. This book is organized into three parts: in Part I the author focuses on the mathematical foundations; in Part II he explains the interactive handling of geometric algebra; and in Part III he deals with computing technology for high-performance implementations based on geometric algebra as a domain-specific language in standard programming languages such as C++ and OpenCL. The book is written in a tutorial style and readers should gain experience with the associated freely available software packages and applications. The book is suitable for students, engineers, and researchers in computer science, computational engineering, and mathematics.

An Essay on the Foundations of Geometry

Author: A. W. Russell

Publisher: CUP Archive



Page: 228

View: 651

Trieste Publishing has a massive catalogue of classic book titles. Our aim is to provide readers with the highest quality reproductions of fiction and non-fiction literature that has stood the test of time. The many thousands of books in our collection have been sourced from libraries and private collections around the world.The titles that Trieste Publishing has chosen to be part of the collection have been scanned to simulate the original. Our readers see the books the same way that their first readers did decades or a hundred or more years ago. Books from that period are often spoiled by imperfections that did not exist in the original. Imperfections could be in the form of blurred text, photographs, or missing pages. It is highly unlikely that this would occur with one of our books. Our extensive quality control ensures that the readers of Trieste Publishing's books will be delighted with their purchase. Our staff has thoroughly reviewed every page of all the books in the collection, repairing, or if necessary, rejecting titles that are not of the highest quality. This process ensures that the reader of one of Trieste Publishing's titles receives a volume that faithfully reproduces the original, and to the maximum degree possible, gives them the experience of owning the original work.We pride ourselves on not only creating a pathway to an extensive reservoir of books of the finest quality, but also providing value to every one of our readers. Generally, Trieste books are purchased singly - on demand, however they may also be purchased in bulk. Readers interested in bulk purchases are invited to contact us directly to enquire about our tailored bulk rates.

Fundamentals of Mathematics


Author: Heinrich Behnke

Publisher: MIT Press

ISBN: 9780262020695

Category: Mathematics

Page: 685

View: 9098

Volume II of a unique survey of the whole field of pure mathematics.

Foundations of Convex Geometry

Author: W. A. Coppel

Publisher: Cambridge University Press

ISBN: 9780521639705

Category: Mathematics

Page: 222

View: 659

This book on the foundations of Euclidean geometry aims to present the subject from the point of view of present day mathematics, taking advantage of all the developments since the appearance of Hilbert's classic work. Here real affine space is characterised by a small number of axioms involving points and line segments making the treatment self-contained and thorough, many results being established under weaker hypotheses than usual. The treatment should be totally accessible for final year undergraduates and graduate students, and can also serve as an introduction to other areas of mathematics such as matroids and antimatroids, combinatorial convexity, the theory of polytopes, projective geometry and functional analysis.

Foundations of Geometry

Author: CTI Reviews

Publisher: Cram101 Textbook Reviews

ISBN: 1497033764

Category: Education

Page: 41

View: 3295

Facts101 is your complete guide to Foundations of Geometry. In this book, you will learn topics such as Axioms for Plane Geometry, Neutral Geometry, Euclidean Geometry, and Hyperbolic Geometry plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Foundations of Incidence Geometry

Projective and Polar Spaces

Author: Johannes Ueberberg

Publisher: Springer Science & Business Media

ISBN: 3642209726

Category: Mathematics

Page: 248

View: 7132

Incidence geometry is a central part of modern mathematics that has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader.