Functional Analysis

Introduction to Further Topics in Analysis

Author: Elias M. Stein,Rami Shakarchi

Publisher: Princeton University Press

ISBN: 0691113874

Category: Mathematics

Page: 423

View: 3593

DOWNLOAD NOW »
"This book covers such topics as Lp̂ spaces, distributions, Baire category, probability theory and Brownian motion, several complex variables and oscillatory integrals in Fourier analysis. The authors focus on key results in each area, highlighting their importance and the organic unity of the subject"--Provided by publisher.

Functional Analysis

Author: P. K. Jain,Khalil Ahmad,Om P. Ahuja

Publisher: New Age International

ISBN: 9788122408010

Category: Functional analysis

Page: 326

View: 5189

DOWNLOAD NOW »
The Book Is Intended To Serve As A Textbook For An Introductory Course In Functional Analysis For The Senior Undergraduate And Graduate Students. It Can Also Be Useful For The Senior Students Of Applied Mathematics, Statistics, Operations Research, Engineering And Theoretical Physics. The Text Starts With A Chapter On Preliminaries Discussing Basic Concepts And Results Which Would Be Taken For Granted Later In The Book. This Is Followed By Chapters On Normed And Banach Spaces, Bounded Linear Operators, Bounded Linear Functionals. The Concept And Specific Geometry Of Hilbert Spaces, Functionals And Operators On Hilbert Spaces And Introduction To Spectral Theory. An Appendix Has Been Given On Schauder Bases.The Salient Features Of The Book Are: * Presentation Of The Subject In A Natural Way * Description Of The Concepts With Justification * Clear And Precise Exposition Avoiding Pendantry * Various Examples And Counter Examples * Graded Problems Throughout Each ChapterNotes And Remarks Within The Text Enhances The Utility Of The Book For The Students.

Complex Analysis

Author: Elias M. Stein,Rami Shakarchi

Publisher: Princeton University Press

ISBN: 1400831156

Category: Mathematics

Page: 400

View: 3209

DOWNLOAD NOW »
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Real Analysis

Measure Theory, Integration, and Hilbert Spaces

Author: Elias M. Stein,Rami Shakarchi

Publisher: Princeton University Press

ISBN: 1400835569

Category: Mathematics

Page: 424

View: 1226

DOWNLOAD NOW »
Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After setting forth the basic facts of measure theory, Lebesgue integration, and differentiation on Euclidian spaces, the authors move to the elements of Hilbert space, via the L2 theory. They next present basic illustrations of these concepts from Fourier analysis, partial differential equations, and complex analysis. The final part of the book introduces the reader to the fascinating subject of fractional-dimensional sets, including Hausdorff measure, self-replicating sets, space-filling curves, and Besicovitch sets. Each chapter has a series of exercises, from the relatively easy to the more complex, that are tied directly to the text. A substantial number of hints encourage the reader to take on even the more challenging exercises. As with the other volumes in the series, Real Analysis is accessible to students interested in such diverse disciplines as mathematics, physics, engineering, and finance, at both the undergraduate and graduate levels. Also available, the first two volumes in the Princeton Lectures in Analysis:

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32)

Author: Elias M. Stein,Guido Weiss

Publisher: Princeton University Press

ISBN: 140088389X

Category: Mathematics

Page: 312

View: 3939

DOWNLOAD NOW »
The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

Random Walk and the Heat Equation

Author: Gregory F. Lawler

Publisher: American Mathematical Soc.

ISBN: 0821848291

Category: Mathematics

Page: 156

View: 3195

DOWNLOAD NOW »
The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.

Introduction to Algorithms

Author: Thomas H. Cormen

Publisher: MIT Press

ISBN: 0262533057

Category: Computers

Page: 1292

View: 1553

DOWNLOAD NOW »
A new edition of the essential text and professional reference, with substantial new material on such topics as vEB trees, multithreaded algorithms, dynamic programming, and edge-based flow.

An Introduction to Analysis

Author: Robert C. Gunning

Publisher: Princeton University Press

ISBN: 1400889413

Category: Mathematics

Page: 384

View: 632

DOWNLOAD NOW »
An essential undergraduate textbook on algebra, topology, and calculus An Introduction to Analysis is an essential primer on basic results in algebra, topology, and calculus for undergraduate students considering advanced degrees in mathematics. Ideal for use in a one-year course, this unique textbook also introduces students to rigorous proofs and formal mathematical writing--skills they need to excel. With a range of problems throughout, An Introduction to Analysis treats n-dimensional calculus from the beginning—differentiation, the Riemann integral, series, and differential forms and Stokes's theorem—enabling students who are serious about mathematics to progress quickly to more challenging topics. The book discusses basic material on point set topology, such as normed and metric spaces, topological spaces, compact sets, and the Baire category theorem. It covers linear algebra as well, including vector spaces, linear mappings, Jordan normal form, bilinear mappings, and normal mappings. Proven in the classroom, An Introduction to Analysis is the first textbook to bring these topics together in one easy-to-use and comprehensive volume. Provides a rigorous introduction to calculus in one and several variables Introduces students to basic topology Covers topics in linear algebra, including matrices, determinants, Jordan normal form, and bilinear and normal mappings Discusses differential forms and Stokes's theorem in n dimensions Also covers the Riemann integral, integrability, improper integrals, and series expansions

Analysis

Author: Elliott H. Lieb,Michael Loss

Publisher: American Mathematical Soc.

ISBN: 0821827839

Category: Mathematics

Page: 346

View: 7586

DOWNLOAD NOW »
This is an excellent textbook on analysis and it has several unique features: Proofs of heat kernel estimates, the Nash inequality and the logarithmic Sobolev inequality are topics that are seldom treated on the level of a textbook. Best constants in several inequalities, such as Young's inequality and the logarithmic Sobolev inequality, are also included. A thorough treatment of rearrangement inequalities and competing symmetries appears in book form for the first time. There is an extensive treatment of potential theory and its applications to quantum mechanics, which, again, is unique at this level. Uniform convexity of $L^p$ space is treated very carefully. The presentation of this important subject is highly unusual for a textbook. All the proofs provide deep insights into the theorems. This book sets a new standard for a graduate textbook in analysis. --Shing-Tung Yau, Harvard University For some number of years, Rudin's ``Real and Complex'', and a few other analysis books, served as the canonical choice for the book to use, and to teach from, in a first year grad analysis course. Lieb-Loss offers a refreshing alternative: It begins with a down-to-earth intro to measure theory, $L^p$ and all that ... It aims at a wide range of essential applications, such as the Fourier transform, and series, inequalities, distributions, and Sobolev spaces--PDE, potential theory, calculus of variations, and math physics (Schrodinger's equation, the hydrogen atom, Thomas-Fermi theory ... to mention a few). The book should work equally well in a one-, or in a two-semester course. The first half of the book covers the basics, and the rest will be great for students to have, regardless of whether or not it gets to be included in a course. --Palle E. T. Jorgensen, University of Iowa

An Introduction to Harmonic Analysis

Author: Yitzhak Katznelson

Publisher: Cambridge University Press

ISBN: 9780521543590

Category: Mathematics

Page: 314

View: 6144

DOWNLOAD NOW »
First published in 1968, An Introduction to Harmonic Analysis has firmly established itself as a classic text and a favorite for students and experts alike. Professor Katznelson starts the book with an exposition of classical Fourier series. The aim is to demonstrate the central ideas of harmonic analysis in a concrete setting, and to provide a stock of examples to foster a clear understanding of the theory. Once these ideas are established, the author goes on to show that the scope of harmonic analysis extends far beyond the setting of the circle group, and he opens the door to other contexts by considering Fourier transforms on the real line as well as a brief look at Fourier analysis on locally compact abelian groups. This new edition has been revised by the author, to include several new sections and a new appendix.

Functional Analysis, Spectral Theory, and Applications

Author: Manfred Einsiedler,Thomas Ward

Publisher: Springer

ISBN: 3319585401

Category: Mathematics

Page: 614

View: 1592

DOWNLOAD NOW »
This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.

An Introduction to Measure Theory

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821869191

Category: Mathematics

Page: 206

View: 6652

DOWNLOAD NOW »
This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Caratheodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Introduction to the Modern Theory of Dynamical Systems

Author: Anatole Katok,Boris Hasselblatt

Publisher: Cambridge University Press

ISBN: 9780521575577

Category: Mathematics

Page: 802

View: 6327

DOWNLOAD NOW »
This book provides a self-contained comprehensive exposition of the theory of dynamical systems. The book begins with a discussion of several elementary but crucial examples. These are used to formulate a program for the general study of asymptotic properties and to introduce the principal theoretical concepts and methods. The main theme of the second part of the book is the interplay between local analysis near individual orbits and the global complexity of the orbit structure. The third and fourth parts develop the theories of low-dimensional dynamical systems and hyperbolic dynamical systems in depth. The book is aimed at students and researchers in mathematics at all levels from advanced undergraduate and up.

Real Analysis

Modern Techniques and Their Applications

Author: Gerald B. Folland

Publisher: John Wiley & Sons

ISBN: 1118626397

Category: Mathematics

Page: 416

View: 9951

DOWNLOAD NOW »
An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.

Fourier Analysis

An Introduction

Author: Elias M. Stein,Rami Shakarchi

Publisher: Princeton University Press

ISBN: 1400831237

Category: Mathematics

Page: 328

View: 9572

DOWNLOAD NOW »
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Variable Lebesgue Spaces

Foundations and Harmonic Analysis

Author: David Cruz-Uribe,Alberto Fiorenza

Publisher: Springer Science & Business Media

ISBN: 3034805489

Category: Mathematics

Page: 312

View: 5492

DOWNLOAD NOW »
This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.​

Feedback Systems

An Introduction for Scientists and Engineers

Author: Karl Johan Aström,Richard M. Murray

Publisher: Princeton University Press

ISBN: 9781400828739

Category: Mathematics

Page: 408

View: 6072

DOWNLOAD NOW »
This book provides an introduction to the mathematics needed to model, analyze, and design feedback systems. It is an ideal textbook for undergraduate and graduate students, and is indispensable for researchers seeking a self-contained reference on control theory. Unlike most books on the subject, Feedback Systems develops transfer functions through the exponential response of a system, and is accessible across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. They provide exercises at the end of every chapter, and an accompanying electronic solutions manual is available. Feedback Systems is a complete one-volume resource for students and researchers in mathematics, engineering, and the sciences. Covers the mathematics needed to model, analyze, and design feedback systems Serves as an introductory textbook for students and a self-contained resource for researchers Includes exercises at the end of every chapter Features an electronic solutions manual Offers techniques applicable across a range of disciplines

The Convenient Setting of Global Analysis

Author: Andreas Kriegl,Peter W. Michor

Publisher: American Mathematical Soc.

ISBN: 0821807803

Category: Mathematics

Page: 618

View: 9003

DOWNLOAD NOW »
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Frechet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.