Fundamentals of Engineering Numerical Analysis

Author: Parviz Moin

Publisher: Cambridge University Press

ISBN: 0521711231

Category: Mathematics

Page: 241

View: 7718

DOWNLOAD NOW »
This text introduces numerical methods and shows how to develop, analyze, and use them. Complete MATLAB programs are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is a first course in numerical analysis for new graduate students in engineering and physical science.

Fundamentals of Engineering Numerical Analysis

Author: Parviz Moin

Publisher: Cambridge University Press

ISBN: 1139489550

Category: Technology & Engineering

Page: N.A

View: 7915

DOWNLOAD NOW »
Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.

A First Course in the Numerical Analysis of Differential Equations

Author: A. Iserles

Publisher: Cambridge University Press

ISBN: 0521734908

Category: Mathematics

Page: 459

View: 9082

DOWNLOAD NOW »
lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

Numerical Analysis for Engineers

Methods and Applications, Second Edition

Author: Bilal Ayyub,Richard H. McCuen

Publisher: CRC Press

ISBN: 1482250365

Category: Mathematics

Page: 431

View: 5398

DOWNLOAD NOW »
Numerical Analysis for Engineers: Methods and Applications demonstrates the power of numerical methods in the context of solving complex engineering and scientific problems. The book helps to prepare future engineers and assists practicing engineers in understanding the fundamentals of numerical methods, especially their applications, limitations, and potentials. Each chapter contains many computational examples, as well as a section on applications that contain additional engineering examples. Each chapter also includes a set of exercise problems. The problems are designed to meet the needs of instructors in assigning homework and to help students with practicing the fundamental concepts. Although the book was developed with emphasis on engineering and technological problems, the numerical methods can also be used to solve problems in other fields of science.

Numerical Methods for Scientists and Engineers

Author: Richard Hamming

Publisher: Courier Corporation

ISBN: 0486134822

Category: Mathematics

Page: 752

View: 7212

DOWNLOAD NOW »
This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.

A First Course in Numerical Analysis

Author: Anthony Ralston,Philip Rabinowitz

Publisher: Courier Corporation

ISBN: 9780486414546

Category: Mathematics

Page: 606

View: 8161

DOWNLOAD NOW »
Outstanding text, oriented toward computer solutions, stresses errors in methods and computational efficiency. Problems — some strictly mathematical, others requiring a computer — appear at the end of each chapter.

Fundamentals of Atmospheric Modeling

Author: Mark Z. Jacobson

Publisher: Cambridge University Press

ISBN: 9780521548656

Category: Science

Page: 813

View: 2539

DOWNLOAD NOW »
This well-received and comprehensive textbook on atmospheric processes and numerical methods has been thoroughly revised. This edition includes a wide range of new numerical techniques for solving problems in areas such as cloud microphysics, ocean-atmosphere exchange processes and atmospheric radiative properties. It also contains improved descriptions of atmospheric physics, dynamics, radiation, and aerosol and cloud processes. It is essential reading for researchers, scientists and advanced students to successfully study air pollution and meteorology.

Fundamentals of Numerical Computation

Author: Tobin A. Driscoll,Richard J. Braun

Publisher: SIAM

ISBN: 1611975085

Category: Science

Page: 553

View: 6446

DOWNLOAD NOW »
Fundamentals of Numerical Computation is an advanced undergraduate-level introduction to the mathematics and use of algorithms for the fundamental problems of numerical computation: linear algebra, finding roots, approximating data and functions, and solving differential equations. The book is organized with simpler methods in the first half and more advanced methods in the second half, allowing use for either a single course or a sequence of two courses. The authors take readers from basic to advanced methods, illustrating them with over 200 self-contained MATLAB functions and examples designed for those with no prior MATLAB experience. Although the text provides many examples, exercises, and illustrations, the aim of the authors is not to provide a cookbook per se, but rather an exploration of the principles of cooking. The authors have developed an online resource that includes well-tested materials related to every chapter. Among these materials are lecture-related slides and videos, ideas for student projects, laboratory exercises, computational examples and scripts, and all the functions presented in the book. The book is intended for advanced undergraduates in math, applied math, engineering, or science disciplines, as well as for researchers and professionals looking for an introduction to a subject they missed or overlooked in their education.

Introduction to Numerical Analysis

Second Edition

Author: F. B. Hildebrand

Publisher: Courier Corporation

ISBN: 0486318559

Category: Mathematics

Page: 669

View: 9586

DOWNLOAD NOW »
Well-known, respected introduction, updated to integrate concepts and procedures associated with computers. Computation, approximation, interpolation, numerical differentiation and integration, smoothing of data, more. Includes 150 additional problems in this edition.

Numerical Methods in Engineering with Python

Author: Jaan Kiusalaas

Publisher: Cambridge University Press

ISBN: 113948415X

Category: Technology & Engineering

Page: 422

View: 7573

DOWNLOAD NOW »
This text is for engineering students and a reference for practising engineers, especially those who wish to explore Python. This new edition features 18 additional exercises and the addition of rational function interpolation. Brent's method of root finding was replaced by Ridder's method, and the Fletcher-Reeves method of optimization was dropped in favor of the downhill simplex method. Each numerical method is explained in detail, and its shortcomings are pointed out. The examples that follow individual topics fall into two categories: hand computations that illustrate the inner workings of the method and small programs that show how the computer code is utilized in solving a problem. This second edition also includes more robust computer code with each method, which is available on the book website. This code is made simple and easy to understand by avoiding complex bookkeeping schemes, while maintaining the essential features of the method.

Elements of Numerical Analysis

Author: Radhey S. Gupta

Publisher: Cambridge University Press

ISBN: 1316338290

Category: Mathematics

Page: N.A

View: 3996

DOWNLOAD NOW »
Numerical analysis deals with the manipulation of numbers to solve a particular problem. This book discusses in detail the creation, analysis and implementation of algorithms to solve the problems of continuous mathematics. An input is provided in the form of numerical data or it is generated as required by the system to solve a mathematical problem. Subsequently, this input is processed through arithmetic operations together with logical operations in a systematic manner and an output is produced in the form of numbers. Covering the fundamentals of numerical analysis and its applications in one volume, this book offers detailed discussion on relevant topics including difference equations, Fourier series, discrete Fourier transforms and finite element methods. In addition, the important concepts of integral equations, Chebyshev Approximation and Eigen Values of Symmetric Matrices are elaborated upon in separate chapters. The book will serve as a suitable textbook for undergraduate students in science and engineering.

Numerical Methods in Biomedical Engineering

Author: Stanley Dunn,Alkis Constantinides,Prabhas V. Moghe

Publisher: Elsevier

ISBN: 9780080470801

Category: Technology & Engineering

Page: 632

View: 7607

DOWNLOAD NOW »
Numerical Modeling in Biomedical Engineering brings together the integrative set of computational problem solving tools important to biomedical engineers. Through the use of comprehensive homework exercises, relevant examples and extensive case studies, this book integrates principles and techniques of numerical analysis. Covering biomechanical phenomena and physiologic, cell and molecular systems, this is an essential tool for students and all those studying biomedical transport, biomedical thermodynamics & kinetics and biomechanics. Supported by Whitaker Foundation Teaching Materials Program; ABET-oriented pedagogical layout Extensive hands-on homework exercises

Numerical Methods for Engineers and Scientists Using MATLAB®

Author: Ramin S. Esfandiari

Publisher: CRC Press

ISBN: 1466585692

Category: Mathematics

Page: 550

View: 5313

DOWNLOAD NOW »
Designed to benefit scientific and engineering applications, Numerical Methods for Engineers and Scientists Using MATLAB® focuses on the fundamentals of numerical methods while making use of MATLAB software. The book introduces MATLAB early on and incorporates it throughout the chapters to perform symbolic, graphical, and numerical tasks. The text covers a variety of methods from curve fitting to solving ordinary and partial differential equations. Provides fully worked-out examples showing all details Confirms results through the execution of the user-defined function or the script file Executes built-in functions for re-confirmation, when available Generates plots regularly to shed light on the soundness and significance of the numerical results Created to be user-friendly and easily understandable, Numerical Methods for Engineers and Scientists Using MATLAB® provides background material and a broad introduction to the essentials of MATLAB, specifically its use with numerical methods. Building on this foundation, it introduces techniques for solving equations and focuses on curve fitting and interpolation techniques. It addresses numerical differentiation and integration methods, presents numerical methods for solving initial-value and boundary-value problems, and discusses the matrix eigenvalue problem, which entails numerical methods to approximate a few or all eigenvalues of a matrix. The book then deals with the numerical solution of partial differential equations, specifically those that frequently arise in engineering and science. The book presents a user-defined function or a MATLAB script file for each method, followed by at least one fully worked-out example. When available, MATLAB built-in functions are executed for confirmation of the results. A large set of exercises of varying levels of difficulty appears at the end of each chapter. The concise approach with strong, up-to-date MATLAB integration provided by this book affords readers a thorough knowledge of the fundamentals of numerical methods utilized in various disciplines.

Introduction to Numerical Analysis

Author: Josef Stoer,R. Bulirsch

Publisher: Springer Science & Business Media

ISBN: 1475722729

Category: Mathematics

Page: 660

View: 791

DOWNLOAD NOW »
On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.

Numerical Methods for Partial Differential Equations

Author: William F. Ames

Publisher: Academic Press

ISBN: 1483262421

Category: Mathematics

Page: 380

View: 3897

DOWNLOAD NOW »
Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.

Handbook of Linear Partial Differential Equations for Engineers and Scientists, Second Edition

Author: Andrei D. Polyanin,Vladimir E. Nazaikinskii

Publisher: CRC Press

ISBN: 1466581492

Category: Mathematics

Page: 1609

View: 2716

DOWNLOAD NOW »
Includes nearly 4,000 linear partial differential equations (PDEs) with solutions Presents solutions of numerous problems relevant to heat and mass transfer, wave theory, hydrodynamics, aerodynamics, elasticity, acoustics, electrodynamics, diffraction theory, quantum mechanics, chemical engineering sciences, electrical engineering, and other fields Outlines basic methods for solving various problems in science and engineering Contains much more linear equations, problems, and solutions than any other book currently available Provides a database of test problems for numerical and approximate analytical methods for solving linear PDEs and systems of coupled PDEs New to the Second Edition More than 700 pages with 1,500+ new first-, second-, third-, fourth-, and higher-order linear equations with solutions Systems of coupled PDEs with solutions Some analytical methods, including decomposition methods and their applications Symbolic and numerical methods for solving linear PDEs with Maple, Mathematica, and MATLAB® Many new problems, illustrative examples, tables, and figures To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity.