Fundamentals of Engineering Numerical Analysis

Author: Parviz Moin

Publisher: Cambridge University Press

ISBN: 0521711231

Category: Mathematics

Page: 241

View: 6570

This text introduces numerical methods and shows how to develop, analyze, and use them. Complete MATLAB programs are now available at, and more than 30 exercises have been added. This thorough and practical book is a first course in numerical analysis for new graduate students in engineering and physical science.

Numerical Analysis for Engineers

Methods and Applications, Second Edition

Author: Bilal Ayyub,Richard H. McCuen

Publisher: CRC Press

ISBN: 1482250365

Category: Mathematics

Page: 431

View: 3570

Numerical Analysis for Engineers: Methods and Applications demonstrates the power of numerical methods in the context of solving complex engineering and scientific problems. The book helps to prepare future engineers and assists practicing engineers in understanding the fundamentals of numerical methods, especially their applications, limitations, and potentials. Each chapter contains many computational examples, as well as a section on applications that contain additional engineering examples. Each chapter also includes a set of exercise problems. The problems are designed to meet the needs of instructors in assigning homework and to help students with practicing the fundamental concepts. Although the book was developed with emphasis on engineering and technological problems, the numerical methods can also be used to solve problems in other fields of science.

A First Course in the Numerical Analysis of Differential Equations

Author: A. Iserles

Publisher: Cambridge University Press

ISBN: 0521734908

Category: Mathematics

Page: 459

View: 561

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.

Principles of Fourier Analysis, Second Edition

Author: Kenneth B. Howell

Publisher: CRC Press

ISBN: 1498734138

Category: Mathematics

Page: 792

View: 4982

Fourier analysis is one of the most useful and widely employed sets of tools for the engineer, the scientist, and the applied mathematician. As such, students and practitioners in these disciplines need a practical and mathematically solid introduction to its principles. They need straightforward verifications of its results and formulas, and they need clear indications of the limitations of those results and formulas. Principles of Fourier Analysis furnishes all this and more. It provides a comprehensive overview of the mathematical theory of Fourier analysis, including the development of Fourier series, "classical" Fourier transforms, generalized Fourier transforms and analysis, and the discrete theory. Much of the author's development is strikingly different from typical presentations. His approach to defining the classical Fourier transform results in a much cleaner, more coherent theory that leads naturally to a starting point for the generalized theory. He also introduces a new generalized theory based on the use of Gaussian test functions that yields an even more general -yet simpler -theory than usually presented. Principles of Fourier Analysis stimulates the appreciation and understanding of the fundamental concepts and serves both beginning students who have seen little or no Fourier analysis as well as the more advanced students who need a deeper understanding. Insightful, non-rigorous derivations motivate much of the material, and thought-provoking examples illustrate what can go wrong when formulas are misused. With clear, engaging exposition, readers develop the ability to intelligently handle the more sophisticated mathematics that Fourier analysis ultimately requires.

Fundamentals of the Finite Element Method for Heat and Mass Transfer

Author: Perumal Nithiarasu,Roland W. Lewis,Kankanhalli N. Seetharamu

Publisher: John Wiley & Sons

ISBN: 111853543X

Category: Science

Page: 464

View: 2006

Fundamentals of the Finite Element Method for Heat and Mass Transfer, Second Edition is a comprehensively updated new edition and is a unique book on the application of the finite element method to heat and mass transfer. • Addresses fundamentals, applications and computer implementation • Educational computer codes are freely available to download, modify and use • Includes a large number of worked examples and exercises • Fills the gap between learning and research

Fundamentals of the Finite Element Method for Heat and Fluid Flow

Author: Roland W. Lewis,Perumal Nithiarasu,Kankanhalli N. Seetharamu

Publisher: John Wiley & Sons

ISBN: 0470020814

Category: Science

Page: 356

View: 2363

Heat transfer is the area of engineering science which describes the energy transport between material bodies due to a difference in temperature. The three different modes of heat transport are conduction, convection and radiation. In most problems, these three modes exist simultaneously. However, the significance of these modes depends on the problems studied and often, insignificant modes are neglected. Very often books published on Computational Fluid Dynamics using the Finite Element Method give very little or no significance to thermal or heat transfer problems. From the research point of view, it is important to explain the handling of various types of heat transfer problems with different types of complex boundary conditions. Problems with slow fluid motion and heat transfer can be difficult problems to handle. Therefore, the complexity of combined fluid flow and heat transfer problems should not be underestimated and should be dealt with carefully. This book: Is ideal for teaching senior undergraduates the fundamentals of how to use the Finite Element Method to solve heat transfer and fluid dynamics problems Explains how to solve various heat transfer problems with different types of boundary conditions Uses recent computational methods and codes to handle complex fluid motion and heat transfer problems Includes a large number of examples and exercises on heat transfer problems In an era of parallel computing, computational efficiency and easy to handle codes play a major part. Bearing all these points in mind, the topics covered on combined flow and heat transfer in this book will be an asset for practising engineers and postgraduate students. Other topics of interest for the heat transfer community, such as heat exchangers and radiation heat transfer, are also included.

Fundamentals of Numerical Computation

Author: Tobin A. Driscoll,Richard J. Braun

Publisher: SIAM

ISBN: 1611975085

Category: Science

Page: 553

View: 3739

Fundamentals of Numerical Computation is an advanced undergraduate-level introduction to the mathematics and use of algorithms for the fundamental problems of numerical computation: linear algebra, finding roots, approximating data and functions, and solving differential equations. The book is organized with simpler methods in the first half and more advanced methods in the second half, allowing use for either a single course or a sequence of two courses. The authors take readers from basic to advanced methods, illustrating them with over 200 self-contained MATLAB functions and examples designed for those with no prior MATLAB experience. Although the text provides many examples, exercises, and illustrations, the aim of the authors is not to provide a cookbook per se, but rather an exploration of the principles of cooking. The authors have developed an online resource that includes well-tested materials related to every chapter. Among these materials are lecture-related slides and videos, ideas for student projects, laboratory exercises, computational examples and scripts, and all the functions presented in the book. The book is intended for advanced undergraduates in math, applied math, engineering, or science disciplines, as well as for researchers and professionals looking for an introduction to a subject they missed or overlooked in their education.

Numerical Methods for Chemical Engineering

Applications in MATLAB

Author: Kenneth J Beers,Kenneth J. Beers

Publisher: Cambridge University Press

ISBN: 9780521859714

Category: Juvenile Nonfiction

Page: 474

View: 6584

Applications of numerical mathematics and scientific computing to chemical engineering.

Numerical Methods for Engineers and Scientists Using MATLAB®

Author: Ramin S. Esfandiari

Publisher: CRC Press

ISBN: 1466585692

Category: Mathematics

Page: 550

View: 8947

Designed to benefit scientific and engineering applications, Numerical Methods for Engineers and Scientists Using MATLAB® focuses on the fundamentals of numerical methods while making use of MATLAB software. The book introduces MATLAB early on and incorporates it throughout the chapters to perform symbolic, graphical, and numerical tasks. The text covers a variety of methods from curve fitting to solving ordinary and partial differential equations. Provides fully worked-out examples showing all details Confirms results through the execution of the user-defined function or the script file Executes built-in functions for re-confirmation, when available Generates plots regularly to shed light on the soundness and significance of the numerical results Created to be user-friendly and easily understandable, Numerical Methods for Engineers and Scientists Using MATLAB® provides background material and a broad introduction to the essentials of MATLAB, specifically its use with numerical methods. Building on this foundation, it introduces techniques for solving equations and focuses on curve fitting and interpolation techniques. It addresses numerical differentiation and integration methods, presents numerical methods for solving initial-value and boundary-value problems, and discusses the matrix eigenvalue problem, which entails numerical methods to approximate a few or all eigenvalues of a matrix. The book then deals with the numerical solution of partial differential equations, specifically those that frequently arise in engineering and science. The book presents a user-defined function or a MATLAB script file for each method, followed by at least one fully worked-out example. When available, MATLAB built-in functions are executed for confirmation of the results. A large set of exercises of varying levels of difficulty appears at the end of each chapter. The concise approach with strong, up-to-date MATLAB integration provided by this book affords readers a thorough knowledge of the fundamentals of numerical methods utilized in various disciplines.


Author: Klaus-Jürgen Bathe

Publisher: DrMaster Publications

ISBN: 9783540668060

Category: Technology & Engineering

Page: 1253

View: 3216

Dieses Lehr- und Handbuch behandelt sowohl die elementaren Konzepte als auch die fortgeschrittenen und zukunftsweisenden linearen und nichtlinearen FE-Methoden in Statik, Dynamik, Festkörper- und Fluidmechanik. Es wird sowohl der physikalische als auch der mathematische Hintergrund der Prozeduren ausführlich und verständlich beschrieben. Das Werk enthält eine Vielzahl von ausgearbeiteten Beispielen, Rechnerübungen und Programmlisten. Als Übersetzung eines erfolgreichen amerikanischen Lehrbuchs hat es sich in zwei Auflagen auch bei den deutschsprachigen Ingenieuren etabliert. Die umfangreichen Änderungen gegenüber der Vorauflage innerhalb aller Kapitel - vor allem aber der fortgeschrittenen - spiegeln die rasche Entwicklung innerhalb des letzten Jahrzehnts auf diesem Gebiet wieder. TOC:Eine Einführung in den Gebrauch von Finite-Elemente-Verfahren.-Vektoren, Matrizen und Tensoren.-Einige Grundbegriffe ingenieurwissenschaftlicher Berechnungen.-Formulierung der Methode der finiten Elemente.-Formulierung und Berechnung von isoparametrischen Finite-Elemente-Matrizen.-Nichtlineare Finite-Elemente-Berechnungen in der Festkörper- und Strukturmechanik.-Finite-Elemente-Berechnungen von Wärmeübertragungs- und Feldproblemen.-Lösung von Gleichgewichtsbeziehungen in statischen Berechnungen.-Lösung von Bewegungsgleichungen in kinetischen Berechnungen.-Vorbemerkungen zur Lösung von Eigenproblemen.-Lösungsverfahren für Eigenprobleme.-Implementierung der Finite-Elemente-Methode.

Numerical Analysis

Author: Tim Sauer

Publisher: Addison-Wesley

ISBN: 9780321268983

Category: Computers

Page: 669

View: 3303

Numerical Analysis, designed to be used in a one-year course in engineering, science and mathematics, helps the readers gain a deeper understanding of numerical analysis by highlighting the five major ideas of the discipline: Convergence, Complexity, Conditioning, Compression, and Orthogonality and connecting back to them throughout the text. Each chapter contains a Reality Check, an extended foray into a relevant application area that can be used as a springboard for individual or team projects. MATLAB is used throughout to demonstrate and implement numerical methods. Fundamentals. Solving Equations. Systems of Equations. Interpolation. Least Square. Numerical Differentiation and Integration. Ordinary Differential Equations. Boundary Value Problems. Partial Differential Equations. Random Numbers and Applications. Trigonometric Interpolation and the FFT. Compression. Eigenvalues and Singular Values. Optimization. For all readers interested in numerical analysis.

Numerical Methods for Scientists and Engineers

Author: Richard Hamming

Publisher: Courier Corporation

ISBN: 0486134822

Category: Mathematics

Page: 752

View: 6019

This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.

Algorithmen - Eine Einführung

Author: Thomas H. Cormen,Charles E. Leiserson,Ronald Rivest,Clifford Stein

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110522012

Category: Computers

Page: 1339

View: 8746

Der "Cormen" bietet eine umfassende und vielseitige Einführung in das moderne Studium von Algorithmen. Es stellt viele Algorithmen Schritt für Schritt vor, behandelt sie detailliert und macht deren Entwurf und deren Analyse allen Leserschichten zugänglich. Sorgfältige Erklärungen zur notwendigen Mathematik helfen, die Analyse der Algorithmen zu verstehen. Den Autoren ist es dabei geglückt, Erklärungen elementar zu halten, ohne auf Tiefe oder mathematische Exaktheit zu verzichten. Jedes der weitgehend eigenständig gestalteten Kapitel stellt einen Algorithmus, eine Entwurfstechnik, ein Anwendungsgebiet oder ein verwandtes Thema vor. Algorithmen werden beschrieben und in Pseudocode entworfen, der für jeden lesbar sein sollte, der schon selbst ein wenig programmiert hat. Zahlreiche Abbildungen verdeutlichen, wie die Algorithmen arbeiten. Ebenfalls angesprochen werden Belange der Implementierung und andere technische Fragen, wobei, da Effizienz als Entwurfskriterium betont wird, die Ausführungen eine sorgfältige Analyse der Laufzeiten der Programme mit ein schließen. Über 1000 Übungen und Problemstellungen und ein umfangreiches Quellen- und Literaturverzeichnis komplettieren das Lehrbuch, dass durch das ganze Studium, aber auch noch danach als mathematisches Nachschlagewerk oder als technisches Handbuch nützlich ist. Für die dritte Auflage wurde das gesamte Buch aktualisiert. Die Änderungen sind vielfältig und umfassen insbesondere neue Kapitel, überarbeiteten Pseudocode, didaktische Verbesserungen und einen lebhafteren Schreibstil. So wurden etwa - neue Kapitel zu van-Emde-Boas-Bäume und mehrfädigen (engl.: multithreaded) Algorithmen aufgenommen, - das Kapitel zu Rekursionsgleichungen überarbeitet, sodass es nunmehr die Teile-und-Beherrsche-Methode besser abdeckt, - die Betrachtungen zu dynamischer Programmierung und Greedy-Algorithmen überarbeitet; Memoisation und der Begriff des Teilproblem-Graphen als eine Möglichkeit, die Laufzeit eines auf dynamischer Programmierung beruhender Algorithmus zu verstehen, werden eingeführt. - 100 neue Übungsaufgaben und 28 neue Problemstellungen ergänzt. Umfangreiches Dozentenmaterial (auf englisch) ist über die Website des US-Verlags verfügbar.

Numerical Computation of Internal and External Flows, Volume 1

Fundamentals of Numerical Discretization

Author: Charles Hirsch

Publisher: Wiley

ISBN: 9780471923855

Category: Technology & Engineering

Page: 538

View: 7149

Numerical Computation of Internal and External Flows Volume 1: Fundamentals of Numerical Discretization C. Hirsch, Vrije Universiteit Brussel, Brussels, Belgium This is the first of two volumes which together describe comprehensively the theory and practice of the numerical computation of internal and external flows. In this volume, the author explains the use of basic computational methods to solve problems in fluid dynamics, comparing these methods so that the reader can see which would be the most appropriate to use for a particular problem. The book is divided into four parts. In the first part, mathematical models are introduced. In the second part, the various numerical methods are described, while in the third and fourth parts the workings of these methods are investigated in some detail. Volume 2 will be concerned with the applications of numerical methods to flow problems, and together the two volumes will provide an excellent reference for practitioners and researchers working in computational fluid mechanics and dynamics. Contents Preface Nomenclature Part 1 The Mathematical Models for Fluid Flow Simulations at Various Levels of Approximation Introduction Chapter 1 The Basic Equations of Fluid Dynamics Chapter 2 The Dynamic Levels of Approximation Chapter 3 The Mathematical Nature of the Flow Equations and their Boundary Conditions Part II Basic Discretization Techniques Chapter 4 The Finite Difference Method Chapter 5 The Finite Element Method Chapter 6 Finite Volume Method and Conservative Discretizations Part III The Analysis of Numerical Schemes Chapter 7 The Concepts of Consistency, Stability and Convergence Chapter 8 The Von Neumann Method for Stability Analysis Chapter 9 The Method of the Equivalent Differential Equation for the Analysis of Stability Chapter 10 The Matrix Method for Stability Analysis Part IV The Resolution of Discretized Equations Chapter 11 Integration Methods for Systems of Ordinary Differential Equations Chapter 12 Iterative Methods for the Resolution of Algebraic Systems Appendix Thomas Algorithm for Tridiagonal Systems Index

Numerical Solution of Partial Differential Equations in Science and Engineering

Author: Leon Lapidus,George F. Pinder

Publisher: John Wiley & Sons

ISBN: 9780471098669

Category: Mathematics

Page: 677

View: 6053

From the reviews of Numerical Solution of Partial Differential Equations in Science and Engineering: "The book by Lapidus and Pinder is a very comprehensive, even exhaustive, survey of the subject . . . [It] is unique in that it covers equally finite difference and finite element methods." Burrelle's "The authors have selected an elementary (but not simplistic) mode of presentation. Many different computational schemes are described in great detail . . . Numerous practical examples and applications are described from beginning to the end, often with calculated results given." Mathematics of Computing "This volume . . . devotes its considerable number of pages to lucid developments of the methods [for solving partial differential equations] . . . the writing is very polished and I found it a pleasure to read!" Mathematics of Computation Of related interest . . . NUMERICAL ANALYSIS FOR APPLIED SCIENCE Myron B. Allen and Eli L. Isaacson. A modern, practical look at numerical analysis, this book guides readers through a broad selection of numerical methods, implementation, and basic theoretical results, with an emphasis on methods used in scientific computation involving differential equations. 1997 (0-471-55266-6) 512 pp. APPLIED MATHEMATICS Second Edition, J. David Logan. Presenting an easily accessible treatment of mathematical methods for scientists and engineers, this acclaimed work covers fluid mechanics and calculus of variations as well as more modern methods-dimensional analysis and scaling, nonlinear wave propagation, bifurcation, and singular perturbation. 1996 (0-471-16513-1) 496 pp.

Partielle Differentialgleichungen und numerische Methoden

Author: Stig Larsson,Vidar Thomee

Publisher: Springer-Verlag

ISBN: 3540274227

Category: Mathematics

Page: 272

View: 8150

Das Buch ist für Studenten der angewandten Mathematik und der Ingenieurwissenschaften auf Vordiplomniveau geeignet. Der Schwerpunkt liegt auf der Verbindung der Theorie linearer partieller Differentialgleichungen mit der Theorie finiter Differenzenverfahren und der Theorie der Methoden finiter Elemente. Für jede Klasse partieller Differentialgleichungen, d.h. elliptische, parabolische und hyperbolische, enthält der Text jeweils ein Kapitel zur mathematischen Theorie der Differentialgleichung gefolgt von einem Kapitel zu finiten Differenzenverfahren sowie einem zu Methoden der finiten Elemente. Den Kapiteln zu elliptischen Gleichungen geht ein Kapitel zum Zweipunkt-Randwertproblem für gewöhnliche Differentialgleichungen voran. Ebenso ist den Kapiteln zu zeitabhängigen Problemen ein Kapitel zum Anfangswertproblem für gewöhnliche Differentialgleichungen vorangestellt. Zudem gibt es ein Kapitel zum elliptischen Eigenwertproblem und zur Entwicklung nach Eigenfunktionen. Die Darstellung setzt keine tiefer gehenden Kenntnisse in Analysis und Funktionalanalysis voraus. Das erforderliche Grundwissen über lineare Funktionalanalysis und Sobolev-Räume wird im Anhang im Überblick besprochen.

Foundations in Applied Nuclear Engineering Analysis

Second Edition

Author: Glenn E Sjoden

Publisher: World Scientific Publishing Company

ISBN: 9814630950

Category: Science

Page: 404

View: 2938

Foundations in Applied Nuclear Engineering Analysis (2nd Edition) covers a fast-paced one semester course to address concepts of modeling in mathematics, engineering analysis, and computational problem solving needed in subjects such as radiation interactions, heat transfer, reactor physics, radiation transport, numerical modeling, etc., for success in a nuclear engineering/medical physics curriculum. While certain topics are covered tangentially, others are covered in depth to target on the appropriate amalgam of topics for success in navigating nuclear-related disciplines. Software examples and programming are used throughout the book, since computational capabilities are essential for new engineers. The book contains a array of topics that cover the essential subjects expected for students to successfully navigate into nuclear-related disciplines. The text assumes that students have familiarity with undergraduate mathematics and physics, and are ready to apply those skills to problems in nuclear engineering. Applications and problem sets are directed toward problems in nuclear science. Software examples using Mathematica software are used in the text. This text was developed as part of a very applied course in mathematical physics methods for nuclear engineers. The course in Nuclear Engineering Analysis that follows this text began at the University of Florida; the 2nd edition was released while at the Georgia Institute of Technology.

Science and Engineering of Casting Solidification

Author: Doru Stefanescu

Publisher: Springer

ISBN: 3319156934

Category: Technology & Engineering

Page: 556

View: 5225

The 3rd edition of this popular textbook covers current topics in all areas of casting solidification. Partial differential equations and numerical analysis are used extensively throughout the text, with numerous calculation examples, to help the reader in achieving a working knowledge of computational solidification modeling. The features of this new edition include: • new chapters on semi-solid and metal matrix composites solidification • a significantly extended treatment of multiscale modeling of solidification and its applications to commercial alloys • a survey of new topics such as solidification of multicomponent alloys and molecular dynamic modeling • new theories, including a theory on oxide bi-films in the treatment of shrinkage problems • an in-depth treatment of the theoretical aspects of the solidification of the most important commercial alloys including steel, cast iron, aluminum-silicon eutectics, and superalloys • updated tables of material constants.

A Theoretical Introduction to Numerical Analysis

Author: Victor S. Ryaben'kii,Semyon V. Tsynkov

Publisher: CRC Press

ISBN: 1420011162

Category: Mathematics

Page: 552

View: 6795

A Theoretical Introduction to Numerical Analysis presents the general methodology and principles of numerical analysis, illustrating these concepts using numerical methods from real analysis, linear algebra, and differential equations. The book focuses on how to efficiently represent mathematical models for computer-based study. An accessible yet rigorous mathematical introduction, this book provides a pedagogical account of the fundamentals of numerical analysis. The authors thoroughly explain basic concepts, such as discretization, error, efficiency, complexity, numerical stability, consistency, and convergence. The text also addresses more complex topics like intrinsic error limits and the effect of smoothness on the accuracy of approximation in the context of Chebyshev interpolation, Gaussian quadratures, and spectral methods for differential equations. Another advanced subject discussed, the method of difference potentials, employs discrete analogues of Calderon’s potentials and boundary projection operators. The authors often delineate various techniques through exercises that require further theoretical study or computer implementation. By lucidly presenting the central mathematical concepts of numerical methods, A Theoretical Introduction to Numerical Analysis provides a foundational link to more specialized computational work in fluid dynamics, acoustics, and electromagnetism.