Geometry: A Comprehensive Course

Author: Dan Pedoe

Publisher: Courier Corporation

ISBN: 0486131734

Category: Mathematics

Page: 464

View: 2109

DOWNLOAD NOW »
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.

Geometrie für Dummies

Author: Wendy Arnone

Publisher: John Wiley & Sons

ISBN: 3527657142

Category: Mathematics

Page: 347

View: 848

DOWNLOAD NOW »
Dreiecke, Rechtecke, Quader; alles schon einmal geh?rt. Aber wie rechnet man noch einmal ihre Fl?cheninhalte aus? Wie kommt man noch einmal auf die Winkelhalbierenden und wo schneiden sie sich? Es ist ganz einfach. Versprochen. Man muss nur wissen, wann welche Rechnung wo die richtige ist. ?Geometrie f?r Dummies? erkl?rt den Lesern, wie sie zu den richtigen Ergebnissen kommen, wie sie die Geometrie beherrschen und nicht die Geometrie sie. Das Buch nimmt dieser Disziplin der Mathematik auf nette Art den Schrecken.

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 2335

DOWNLOAD NOW »
Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Grundlagen der Geometrie

Author: David Hilbert

Publisher: SEVERUS Verlag

ISBN: 3863479467

Category: Mathematics

Page: 248

View: 9928

DOWNLOAD NOW »
Seine Erkenntnisse beeinflussen bis heute die Forschung: David Hilbert baut in seinen „Grundlagen der Geometrie“ auf Euklids Lehre ein Grundsatzsystem auf, von dem ausgehend er wichtige geometrische Sätze ableitet. Die erstmals 1899 erschienene Abhandlung machte Hilbert zu einem der wichtigsten Mathematiker der Neuzeit, der auch den Formalismus entscheidend prägte.

Die Gruppentheoretische Methode in der Quantenmechanik

Author: Bartel Leendert van der Waerden

Publisher: Springer-Verlag

ISBN: 3662021870

Category: Mathematics

Page: 160

View: 7191

DOWNLOAD NOW »
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

5000 Jahre Geometrie

Geschichte Kulturen Menschen

Author: Christoph J. Scriba,Peter Schreiber

Publisher: Springer-Verlag

ISBN: 3662045001

Category: Mathematics

Page: 596

View: 5916

DOWNLOAD NOW »
Lange bevor die Schrift entwickelt wurde, hat der Mensch geometrische Strukturen wahrgenommen und systematisch verwendet: ob beim Weben oder Flechten einfacher zweidimensionaler Muster oder beim Bauen mit dreidimensionalen Körpern. Das Buch liefert einen faszinierenden Überblick über die geometrischen Vorstellungen und Erkenntnisse der Menschheit von der Urgesellschaft bis hin zu den mathematischen und künstlerischen Ideen des 20. Jahrhunderts.

English - A Comprehensive Course: Grades 5 to 7

Author: Kathi Wyldeck

Publisher: Lulu.com

ISBN: 1300870478

Category: Education

Page: 112

View: 5883

DOWNLOAD NOW »
This comprehensive English course is designed for children in Grades 5 to 7, for intermediate ESL students, for pupils in higher grades who need more practice with basic skills, and for students who study at home. Every chapter consists of grammar, reading comprehension, phonic spelling, vocabulary, conversation, writing practice, and general knowledge. At the back of the book are several extra sections including conversation topics for ESL students, extra writing topics, a phonics summary, dictations, a booklist, and answers to all the exercises. This book is based on the Essential English series, but is an updated version, in a better-bound, larger format, and with the addition of general knowledge.

Differentialgeometrie, Topologie und Physik

Author: Mikio Nakahara

Publisher: Springer-Verlag

ISBN: 3662453002

Category: Science

Page: 597

View: 1665

DOWNLOAD NOW »
Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Vektoranalysis

Author: Klaus Jänich

Publisher: Springer-Verlag

ISBN: 3662107503

Category: Mathematics

Page: 277

View: 5381

DOWNLOAD NOW »
Die Vektoranalysis handelt, in klassischer Darstellung, von Vektorfeldern, den Operatoren Gradient, Divergenz und Rotation, von Linien-, Flächen- und Volumenintegralen und von den Integralsätzen von Gauß, Stokes und Green. In moderner Fassung ist es der Cartansche Kalkül mit dem Satz von Stokes. Das vorliegende Buch vertritt grundsätzlich die moderne Herangehensweise, geht aber auch sorgfältig auf die klassische Notation und Auffassung ein. Das Buch richtet sich an Mathematik- und Physikstudenten ab dem zweiten Studienjahr, die mit den Grundbegriffen der Differential- und Integralrechnung in einer und mehreren Variablen sowie der Topologie vertraut sind. Der sehr persönliche Stil des Autors und die aus anderen Büchern bereits bekannten Lernhilfen, wie: viele Figuren, mehr als 50 kommentierte Übungsaufgaben, über 100 Tests mit Antworten, machen auch diesen Text zum Selbststudium hervorragend geeignet.

Topologie

Author: Klaus Jänich

Publisher: Springer-Verlag

ISBN: 3662105756

Category: Mathematics

Page: 241

View: 9284

DOWNLOAD NOW »
Aus den Rezensionen: "Was das Buch vor allem auszeichnet, ist die unkonventionelle Darstellungsweise. Hier wird Mathematik nicht im trockenen Definition-Satz-Beweis-Stil geboten, sondern sie wird dem Leser pointiert und mit viel Humor schmackhaft gemacht. In ungewöhnlich fesselnder Sprache geschrieben, ist die Lektüre dieses Buches auch ein belletristisches Vergnügen. Fast 200 sehr instruktive und schöne Zeichnungen unterstützen das Verständnis, motivieren die behandelten Aussagen, modellieren die tragenden Beweisideen heraus. Ungewöhnlich ist auch das Register, das unter jedem Stichwort eine Kurzdefinition enthält und somit umständliches Nachschlagen erspart". Wiss. Zeitschrift der TU Dresden Jetzt in der siebenten, durchgesehenen Auflage!

Was ist Mathematik?

Author: Richard Courant,Herbert Robbins

Publisher: Springer-Verlag

ISBN: 3662000539

Category: Mathematics

Page: N.A

View: 7571

DOWNLOAD NOW »
47 brauchen nur den Nenner n so groß zu wählen, daß das Intervall [0, IJn] kleiner wird als das fragliche Intervall [A, B], dann muß mindestens einer der Brüche m/n innerhalb des Intervalls liegen. Also kann es kein noch so kleines Intervall auf der Achse geben, das von rationalen Punkten frei wäre. Es folgt weiterhin, daß es in jedem Intervall unendlich viele rationale Punkte geben muß; denn wenn es nur eine endliche Anzahl gäbe, so könnte das Intervall zwischen zwei beliebigen benachbarten Punkten keine rationalen Punkte enthalten, was, wie wir eben sahen, unmöglich ist. § 2. Inkommensurable Strecken, irrationale Zahlen und der Grenzwertbegriff 1. Einleitung Vergleicht man zwei Strecken a und b hinsichtlich ihrer Größe, so kann es vor kommen, daß a in b genau r-mal enthalten ist, wobei r eine ganze Zahl darstellt. In diesem Fall können wir das Maß der Strecke b durch das von a ausdrücken, indem wir sagen, daß die Länge von b das r-fache der Länge von a ist.

Automorphe Formen

Author: Anton Deitmar

Publisher: Springer-Verlag

ISBN: 3642123902

Category: Mathematics

Page: 252

View: 6590

DOWNLOAD NOW »
Das Buch bietet eine Einführung in die Theorie der automorphen Formen. Beginnend bei klassischen Modulformen führt der Autor seine Leser hin zur modernen, darstellungstheoretischen Beschreibung von automorphen Formen und ihren L-Funktionen. Das Hauptgewicht legt er auf den Übergang von der klassischen, elementaren Sichtweise zu der modernen, durch die Darstellungstheorie begründete Herangehensweise. Diese Art der Verbindung von klassischer und moderner Sichtweise war in der Lehrbuchliteratur bisher nicht zu finden.

Projektive Geometrie der Ebene

Ein klassischer Zugang mit interaktiver Visualisierung

Author: Stefan Liebscher

Publisher: Springer-Verlag

ISBN: 3662540800

Category: Mathematics

Page: 118

View: 8793

DOWNLOAD NOW »
Dieses Buch bietet eine Einführung in die projektive Geometrie, wobei algebraische Details auf ein für die Beweise nötiges Minimum beschränkt werden. Um die Sachverhalte noch zeichnerisch darstellen zu können, konzentrieren wir uns auf die reelle projektive Ebene. Zentrales Thema sind Kegelschnitte und ihre Beziehungen – hier zeigt sich die durch den projektiven Zugang erreichbare Klarheit besonders deutlich. Wir werden Geometrie betreiben, ohne zu messen. Auch wollen wir verstehen, inwiefern die euklidische Ebene – also unsere übliche geometrische Vorstellungswelt - ein singulärer Grenzfall ist und wie uns das helfen kann, geometrische Sachverhalte zu verstehen. Viele der besprochenen Sachverhalte können mit einer interaktiven Applikation auf der Webseite des Autors visualisiert und nachvollzogen werden.