Getting Started with Julia

Author: Ivo Balbaert

Publisher: Packt Publishing Ltd

ISBN: 1783284803

Category: Computers

Page: 214

View: 8856

DOWNLOAD NOW »
This book is for you if you are a data scientist or working on any technical or scientific computation projects. The book assumes you have a basic working knowledge of high-level dynamic languages such as MATLAB, R, Python, or Ruby.

Mastering Julia

Author: Malcolm Sherrington

Publisher: Packt Publishing Ltd

ISBN: 1783553324

Category: Computers

Page: 410

View: 854

DOWNLOAD NOW »
Julia is a well-constructed programming language with fast execution speed, eliminating the classic problem of performing analysis in one language and translating it for performance into a second. This book will help you develop and enhance your programming skills in Julia to solve real-world automation challenges. This book starts off with a refresher on installing and running Julia on different platforms. Next, you will compare the different ways of working with Julia and explore Julia's key features in-depth by looking at design and build. You will see how data works using simple statistics and analytics, and discover Julia's speed, its real strength, which makes it particularly useful in highly intensive computing tasks and observe how Julia can cooperate with external processes in order to enhance graphics and data visualization. Finally, you will look into meta-programming and learn how it adds great power to the language and establish networking and distributed computing with Julia.

Beginning Julia Programming

For Engineers and Scientists

Author: Sandeep Nagar

Publisher: Apress

ISBN: 1484231716

Category: Computers

Page: 351

View: 8738

DOWNLOAD NOW »
Get started with Julia for engineering and numerical computing, especially data science, machine learning, and scientific computing applications. This book explains how Julia provides the functionality, ease-of-use and intuitive syntax of R, Python, MATLAB, SAS, or Stata combined with the speed, capacity, and performance of C, C++, or Java. You’ll learn the OOP principles required to get you started, then how to do basic mathematics with Julia. Other core functionality of Julia that you’ll cover, includes working with complex numbers, rational and irrational numbers, rings, and fields. Beginning Julia Programming takes you beyond these basics to harness Julia’s powerful features for mathematical functions in Julia, arrays for matrix operations, plotting, and more. Along the way, you also learn how to manage strings, write functions, work with control flows, and carry out I/O to implement and leverage the mathematics needed for your data science and analysis projects. "Julia walks like Python and runs like C". This phrase explains why Julia is quickly growing as the most favored option for data analytics and numerical computation. After reading and using this book, you'll have the essential knowledge and skills to build your first Julia-based application. What You'll Learn Obtain core skills in Julia Apply Julia in engineering and science applications Work with mathematical functions in Julia Use arrays, strings, functions, control flow, and I/O in Julia Carry out plotting and display basic graphics Who This Book Is For Those who are new to Julia; experienced users may also find this helpful as a reference.

Learning Julia

Build high-performance applications for scientific computing

Author: Anshul Joshi,Rahul Lakhanpal

Publisher: Packt Publishing Ltd

ISBN: 1785885367

Category: Computers

Page: 316

View: 8920

DOWNLOAD NOW »
Learn Julia language for data science and data analytics About This Book Set up Julia's environment and start building simple programs Explore the technical aspects of Julia and its potential when it comes to speed and data processing Write efficient and high-quality code in Julia Who This Book Is For This book allows existing programmers, statisticians and data scientists to learn the Julia and take its advantage while building applications with complex numerical and scientific computations. Basic knowledge of mathematics is needed to understand the various methods that will be used or created in the book to exploit the capabilities for which Julia is made. What You Will Learn Understand Julia's ecosystem and create simple programs Master the type system and create your own types in Julia Understand Julia's type system, annotations, and conversions Define functions and understand meta-programming and multiple dispatch Create graphics and data visualizations using Julia Build programs capable of networking and parallel computation Develop real-world applications and use connections for RDBMS and NoSQL Learn to interact with other programming languages–C and Python—using Julia In Detail Julia is a highly appropriate language for scientific computing, but it comes with all the required capabilities of a general-purpose language. It allows us to achieve C/Fortran-like performance while maintaining the concise syntax of a scripting language such as Python. It is perfect for building high-performance and concurrent applications. From the basics of its syntax to learning built-in object types, this book covers it all. This book shows you how to write effective functions, reduce code redundancies, and improve code reuse. It will be helpful for new programmers who are starting out with Julia to explore its wide and ever-growing package ecosystem and also for experienced developers/statisticians/data scientists who want to add Julia to their skill-set. The book presents the fundamentals of programming in Julia and in-depth informative examples, using a step-by-step approach. You will be taken through concepts and examples such as doing simple mathematical operations, creating loops, metaprogramming, functions, collections, multiple dispatch, and so on. By the end of the book, you will be able to apply your skills in Julia to create and explore applications of any domain. Style and approach This book demonstrates the basics of Julia along with some data structures and testing tools that will give you enough material to get started with the language from an application standpoint.

Julia High Performance

Author: Avik Sengupta

Publisher: Packt Publishing Ltd

ISBN: 1785887823

Category: Computers

Page: 132

View: 1936

DOWNLOAD NOW »
Design and develop high performing programs with Julia About This Book Learn to code high reliability and high performance programs Stand out from the crowd by developing code that runs faster than your peers' codes This book is intended for developers who are interested in high performance technical programming. Who This Book Is For This book is for beginner and intermediate Julia programmers who are interested in high performance technical computing. You will have a basic familiarity with Julia syntax, and have written some small programs in the language. What You Will Learn Discover the secrets behind Julia's speed Get a sense of the possibilities and limitations of Julia's performance Analyze the performance of Julia programs Measure the time and memory taken by Julia programs Create fast machine code using Julia's type information Define and call functions without compromising Julia's performance Understand number types in Julia Use Julia arrays to write high performance code Get an overview of Julia's distributed computing capabilities In Detail Julia is a high performance, high-level dynamic language designed to address the requirements of high-level numerical and scientific computing. Julia brings solutions to the complexities faced by developers while developing elegant and high performing code. Julia High Performance will take you on a journey to understand the performance characteristics of your Julia programs, and enables you to utilize the promise of near C levels of performance in Julia. You will learn to analyze and measure the performance of Julia code, understand how to avoid bottlenecks, and design your program for the highest possible performance. In this book, you will also see how Julia uses type information to achieve its performance goals, and how to use multuple dispatch to help the compiler to emit high performance machine code. Numbers and their arrays are obviously the key structures in scientific computing – you will see how Julia's design makes them fast. The last chapter will give you a taste of Julia's distributed computing capabilities. Style and approach This is a hands-on manual that will give you good explanations about the important concepts related to Julia programming.

Julia Programming for Operations Research

A Primer on Computing

Author: Changhyun Kwon

Publisher: Createspace Independent Publishing Platform

ISBN: 9781533328793

Category: Julia (Computer program language)

Page: 248

View: 2936

DOWNLOAD NOW »
Last Updated: December 2017 The main motivation of writing this book was to help the author himself. He is a professor in the field of operations research, and his daily activities involve building models of mathematical optimization, developing algorithms for solving the problems, implementing those algorithms using computer programming languages, experimenting with data, etc. Three languages are involved: human language, mathematical language, and computer language. His team of students need to go over three different languages, which requires "translation" among the three languages. As this book was written to teach his research group how to translate, this book will also be useful for anyone who needs to learn how to translate in a similar situation. The Julia Language is as fast as C, as convenient as MATLAB, and as general as Python with a flexible algebraic modeling language for mathematical optimization problems. With the great support from Julia developers, especially the developers of the JuMP--Julia for Mathematical Programming--package, Julia makes a perfect tool for students and professionals in operations research and related areas such as industrial engineering, management science, transportation engineering, economics, and regional science. For more information, visit: http://www.chkwon.net/julia

Julia for Data Science

Author: Zacharias Voulgaris, PhD

Publisher: Technics Publications

ISBN: 1634621328

Category: Computers

Page: 366

View: 4296

DOWNLOAD NOW »
Master how to use the Julia language to solve business critical data science challenges. After covering the importance of Julia to the data science community and several essential data science principles, we start with the basics including how to install Julia and its powerful libraries. Many examples are provided as we illustrate how to leverage each Julia command, dataset, and function. Specialized script packages are introduced and described. Hands-on problems representative of those commonly encountered throughout the data science pipeline are provided, and we guide you in the use of Julia in solving them using published datasets. Many of these scenarios make use of existing packages and built-in functions, as we cover: 1. 1. An overview of the data science pipeline along with an example illustrating the key points, implemented in Julia 2. 2. Options for Julia IDEs 3. 3. Programming structures and functions 4. 4. Engineering tasks, such as importing, cleaning, formatting and storing data, as well as performing data preprocessing 5. 5. Data visualization and some simple yet powerful statistics for data exploration purposes 6. 6. Dimensionality reduction and feature evaluation 7. 7. Machine learning methods, ranging from unsupervised (different types of clustering) to supervised ones (decision trees, random forests, basic neural networks, regression trees, and Extreme Learning Machines) 8. 8. Graph analysis including pinpointing the connections among the various entities and how they can be mined for useful insights. Each chapter concludes with a series of questions and exercises to reinforce what you learned. The last chapter of the book will guide you in creating a data science application from scratch using Julia.

Julia Cookbook

Author: Jalem Raj Rohit

Publisher: Packt Publishing Ltd

ISBN: 1785883631

Category: Computers

Page: 172

View: 1903

DOWNLOAD NOW »
Over 40 recipes to get you up and running with programming using Julia About This Book Follow a practical approach to learn Julia programming the easy way Get an extensive coverage of Julia's packages for statistical analysis This recipe-based approach will help you get familiar with the key concepts in Juli Who This Book Is For This book is for data scientists and data analysts who are familiar with the basics of the Julia language. Prior experience of working with high-level languages such as MATLAB, Python, R, or Ruby is expected. What You Will Learn Extract and handle your data with Julia Uncover the concepts of metaprogramming in Julia Conduct statistical analysis with StatsBase.jl and Distributions.jl Build your data science models Find out how to visualize your data with Gadfly Explore big data concepts in Julia In Detail Want to handle everything that Julia can throw at you and get the most of it every day? This practical guide to programming with Julia for performing numerical computation will make you more productive and able work with data more efficiently. The book starts with the main features of Julia to help you quickly refresh your knowledge of functions, modules, and arrays. We'll also show you how to utilize the Julia language to identify, retrieve, and transform data sets so you can perform data analysis and data manipulation. Later on, you'll see how to optimize data science programs with parallel computing and memory allocation. You'll get familiar with the concepts of package development and networking to solve numerical problems using the Julia platform. This book includes recipes on identifying and classifying data science problems, data modelling, data analysis, data manipulation, meta-programming, multidimensional arrays, and parallel computing. By the end of the book, you will acquire the skills to work more effectively with your data. Style and approach This book has a recipe-based approach to help you grasp the concepts of Julia programming.

Julia for Data Science

Author: Anshul Joshi

Publisher: Packt Publishing Ltd

ISBN: 1783553863

Category: Computers

Page: 346

View: 9419

DOWNLOAD NOW »
Explore the world of data science from scratch with Julia by your side About This Book An in-depth exploration of Julia's growing ecosystem of packages Work with the most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn about deep learning using Mocha.jl and give speed and high performance to data analysis on large data sets Who This Book Is For This book is aimed at data analysts and aspiring data scientists who have a basic knowledge of Julia or are completely new to it. The book also appeals to those competent in R and Python and wish to adopt Julia to improve their skills set in Data Science. It would be beneficial if the readers have a good background in statistics and computational mathematics. What You Will Learn Apply statistical models in Julia for data-driven decisions Understanding the process of data munging and data preparation using Julia Explore techniques to visualize data using Julia and D3 based packages Using Julia to create self-learning systems using cutting edge machine learning algorithms Create supervised and unsupervised machine learning systems using Julia. Also, explore ensemble models Build a recommendation engine in Julia Dive into Julia's deep learning framework and build a system using Mocha.jl In Detail Julia is a fast and high performing language that's perfectly suited to data science with a mature package ecosystem and is now feature complete. It is a good tool for a data science practitioner. There was a famous post at Harvard Business Review that Data Scientist is the sexiest job of the 21st century. (https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century). This book will help you get familiarised with Julia's rich ecosystem, which is continuously evolving, allowing you to stay on top of your game. This book contains the essentials of data science and gives a high-level overview of advanced statistics and techniques. You will dive in and will work on generating insights by performing inferential statistics, and will reveal hidden patterns and trends using data mining. This has the practical coverage of statistics and machine learning. You will develop knowledge to build statistical models and machine learning systems in Julia with attractive visualizations. You will then delve into the world of Deep learning in Julia and will understand the framework, Mocha.jl with which you can create artificial neural networks and implement deep learning. This book addresses the challenges of real-world data science problems, including data cleaning, data preparation, inferential statistics, statistical modeling, building high-performance machine learning systems and creating effective visualizations using Julia. Style and approach This practical and easy-to-follow yet comprehensive guide will get you learning about Julia with respect to data science. Each topic is explained thoroughly and placed in context. For the more inquisitive, we dive deeper into the language and its use case. This is the one true guide to working with Julia in data science.

Introduction to Quantitative Macroeconomics Using Julia

From Basic to State-of-the-Art Computational Techniques

Author: Petre Caraiani

Publisher: Academic Press

ISBN: 0128135123

Category: Business & Economics

Page: 238

View: 9086

DOWNLOAD NOW »
Introduction to Quantitative Macroeconomics Using Julia: From Basic to State-of-the-Art Computational Techniques facilitates access to fundamental techniques in computational and quantitative macroeconomics. It focuses on the recent and very promising software, Julia, which offers a MATLAB-like language at speeds comparable to C/Fortran, also discussing modeling challenges that make quantitative macroeconomics dynamic, a key feature that few books on the topic include for macroeconomists who need the basic tools to build, solve and simulate macroeconomic models. This book neatly fills the gap between intermediate macroeconomic books and modern DSGE models used in research. Combines an introduction to Julia, with the specific needs of macroeconomic students who are interested in DSGE models and PhD students and researchers interested in building DSGE models Teaches fundamental techniques in quantitative macroeconomics by introducing theoretical elements of key macroeconomic models and their potential algorithmic implementations Exposes researchers working in macroeconomics to state-of-the-art computational techniques for simulating and solving DSGE models

Getting Started with TensorFlow

Author: Giancarlo Zaccone

Publisher: Packt Publishing Ltd

ISBN: 1786469065

Category: Computers

Page: 180

View: 1832

DOWNLOAD NOW »
Get up and running with the latest numerical computing library by Google and dive deeper into your data! About This Book Get the first book on the market that shows you the key aspects TensorFlow, how it works, and how to use it for the second generation of machine learning Want to perform faster and more accurate computations in the field of data science? This book will acquaint you with an all-new refreshing library—TensorFlow! Dive into the next generation of numerical computing and get the most out of your data with this quick guide Who This Book Is For This book is dedicated to all the machine learning and deep learning enthusiasts, data scientists, researchers, and even students who want to perform more accurate, fast machine learning operations with TensorFlow. Those with basic knowledge of programming (Python and C/C++) and math concepts who want to be introduced to the topics of machine learning will find this book useful. What You Will Learn Install and adopt TensorFlow in your Python environment to solve mathematical problems Get to know the basic machine and deep learning concepts Train and test neural networks to fit your data model Make predictions using regression algorithms Analyze your data with a clustering procedure Develop algorithms for clustering and data classification Use GPU computing to analyze big data In Detail Google's TensorFlow engine, after much fanfare, has evolved in to a robust, user-friendly, and customizable, application-grade software library of machine learning (ML) code for numerical computation and neural networks. This book takes you through the practical software implementation of various machine learning techniques with TensorFlow. In the first few chapters, you'll gain familiarity with the framework and perform the mathematical operations required for data analysis. As you progress further, you'll learn to implement various machine learning techniques such as classification, clustering, neural networks, and deep learning through practical examples. By the end of this book, you'll have gained hands-on experience of using TensorFlow and building classification, image recognition systems, language processing, and information retrieving systems for your application. Style and approach Get quickly up and running with TensorFlow using this fast-paced guide. You will get to know everything that can be done with TensorFlow and we'll show you how to implement it in your environment. The examples in the book are from the core of the computation industry—something you can connect to and will find familiar.

Programming in Go

Creating Applications for the 21st Century

Author: Mark Summerfield

Publisher: Addison-Wesley

ISBN: 0132764091

Category: Computers

Page: 496

View: 2551

DOWNLOAD NOW »
Your Hands-On Guide to Go, the Revolutionary New Language Designed for Concurrency, Multicore Hardware, and Programmer Convenience Today’s most exciting new programming language, Go, is designed from the ground up to help you easily leverage all the power of today’s multicore hardware. With this guide, pioneering Go programmer Mark Summerfield shows how to write code that takes full advantage of Go’s breakthrough features and idioms. Both a tutorial and a language reference, Programming in Go brings together all the knowledge you need to evaluate Go, think in Go, and write high-performance software with Go. Summerfield presents multiple idiom comparisons showing exactly how Go improves upon older languages, calling special attention to Go’s key innovations. Along the way, he explains everything from the absolute basics through Go’s lock-free channel-based concurrency and its flexible and unusual duck-typing type-safe approach to object-orientation. Throughout, Summerfield’s approach is thoroughly practical. Each chapter offers multiple live code examples designed to encourage experimentation and help you quickly develop mastery. Wherever possible, complete programs and packages are presented to provide realistic use cases, as well as exercises. Coverage includes Quickly getting and installing Go, and building and running Go programs Exploring Go’s syntax, features, and extensive standard library Programming Boolean values, expressions, and numeric types Creating, comparing, indexing, slicing, and formatting strings Understanding Go’s highly efficient built-in collection types: slices and maps Using Go as a procedural programming language Discovering Go’s unusual and flexible approach to object orientation Mastering Go’s unique, simple, and natural approach to fine-grained concurrency Reading and writing binary, text, JSON, and XML files Importing and using standard library packages, custom packages, and third-party packages Creating, documenting, unit testing, and benchmarking custom packages

Seven More Languages in Seven Weeks

Languages That Are Shaping the Future

Author: Bruce Tate,Ian Dees,Frederic Daoud,Jack Moffitt

Publisher: Pragmatic Bookshelf

ISBN: 1680504746

Category: Computers

Page: 320

View: 2436

DOWNLOAD NOW »
Great programmers aren't born--they're made. The industry is moving from object-oriented languages to functional languages, and you need to commit to radical improvement. New programming languages arm you with the tools and idioms you need to refine your craft. While other language primers take you through basic installation and "Hello, World," we aim higher. Each language in Seven More Languages in Seven Weeks will take you on a step-by-step journey through the most important paradigms of our time. You'll learn seven exciting languages: Lua, Factor, Elixir, Elm, Julia, MiniKanren, and Idris. Learn from the award-winning programming series that inspired the Elixir language. Hear how other programmers across broadly different communities solve problems important enough to compel language development. Expand your perspective, and learn to solve multicore and distribution problems. In each language, you'll solve a non-trivial problem, using the techniques that make that language special. Write a fully functional game in Elm, without a single callback, that compiles to JavaScript so you can deploy it in any browser. Write a logic program in Clojure using a programming model, MiniKanren, that is as powerful as Prolog but much better at interacting with the outside world. Build a distributed program in Elixir with Lisp-style macros, rich Ruby-like syntax, and the richness of the Erlang virtual machine. Build your own object layer in Lua, a statistical program in Julia, a proof in code with Idris, and a quiz game in Factor. When you're done, you'll have written programs in five different programming paradigms that were written on three different continents. You'll have explored four languages on the leading edge, invented in the past five years, and three more radically different languages, each with something significant to teach you.

Effective Computation in Physics

Field Guide to Research with Python

Author: Anthony Scopatz,Kathryn D. Huff

Publisher: "O'Reilly Media, Inc."

ISBN: 1491901586

Category: Science

Page: 552

View: 3256

DOWNLOAD NOW »
More physicists today are taking on the role of software developer as part of their research, but software development isn’t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. You’ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures

The Way to Go

A Thorough Introduction to the Go Programming Language

Author: Ivo Balbaert

Publisher: iUniverse

ISBN: 1469769166

Category: Computers

Page: 628

View: 6748

DOWNLOAD NOW »
This book provides the reader with a comprehensive overview of the new open source programming language Go (in its first stable and maintained release Go 1) from Google. The language is devised with Java / C#-like syntax so as to feel familiar to the bulk of programmers today, but Go code is much cleaner and simpler to read, thus increasing the productivity of developers. You will see how Go: simplifies programming with slices, maps, structs and interfaces incorporates functional programming makes error-handling easy and secure simplifies concurrent and parallel programming with goroutines and channels And you will learn how to: make use of Go's excellent standard library program Go the idiomatic way using patterns and best practices in over 225 working examples and 135 exercises This book focuses on the aspects that the reader needs to take part in the coming software revolution using Go.

Python Machine Learning

Author: Sebastian Raschka

Publisher: Packt Publishing Ltd

ISBN: 1783555149

Category: Computers

Page: 454

View: 7355

DOWNLOAD NOW »
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Programming the Raspberry Pi: Getting Started with Python

Author: Simon Monk

Publisher: McGraw Hill Professional

ISBN: 0071807845

Category: Computers

Page: 192

View: 8497

DOWNLOAD NOW »
Program your own Raspberry Pi projects Create innovative programs and fun games on your tiny yet powerful Raspberry Pi. In this book, electronics guru Simon Monk explains the basics of Raspberry Pi application development, while providing hands-on examples and ready-to-use scripts. See how to set up hardware and software, write and debug applications, create user-friendly interfaces, and control external electronics. Do-it-yourself projects include a hangman game, an LED clock, and a software-controlled roving robot. Boot up and configure your Raspberry Pi Navigate files, folders, and menus Create Python programs using the IDLE editor Work with strings, lists, and functions Use and write your own libraries, modules, and classes Add Web features to your programs Develop interactive games with Pygame Interface with devices through the GPIO port Build a Raspberry Pi Robot and LED Clock Build professional-quality GUIs using Tkinter

IPython Interactive Computing and Visualization Cookbook, Second Edition

Over 100 hands-on recipes to sharpen your skills in high-performance numerical computing and data science in the Jupyter Notebook

Author: Cyrille Rossant

Publisher: Packt Publishing Ltd

ISBN: 1785881930

Category: Computers

Page: 548

View: 7502

DOWNLOAD NOW »
Learn to use IPython and Jupyter Notebook for your data analysis and visualization work. Key Features Leverage the Jupyter Notebook for interactive data science and visualization Become an expert in high-performance computing and visualization for data analysis and scientific modeling A comprehensive coverage of scientific computing through many hands-on, example-driven recipes with detailed, step-by-step explanations Book Description Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics. What you will learn Master all features of the Jupyter Notebook Code better: write high-quality, readable, and well-tested programs; profile and optimize your code; and conduct reproducible interactive computing experiments Visualize data and create interactive plots in the Jupyter Notebook Write blazingly fast Python programs with NumPy, ctypes, Numba, Cython, OpenMP, GPU programming (CUDA), parallel IPython, Dask, and more Analyze data with Bayesian or frequentist statistics (Pandas, PyMC, and R), and learn from actual data through machine learning (scikit-learn) Gain valuable insights into signals, images, and sounds with SciPy, scikit-image, and OpenCV Simulate deterministic and stochastic dynamical systems in Python Familiarize yourself with math in Python using SymPy and Sage: algebra, analysis, logic, graphs, geometry, and probability theory Who this book is for This book is intended for anyone interested in numerical computing and data science: students, researchers, teachers, engineers, analysts, and hobbyists. A basic knowledge of Python/NumPy is recommended. Some skills in mathematics will help you understand the theory behind the computational methods.

Getting Started with Python Data Analysis

Author: Phuong Vo.T.H,Martin Czygan

Publisher: Packt Publishing Ltd

ISBN: 1783988452

Category: Computers

Page: 188

View: 4999

DOWNLOAD NOW »
Learn to use powerful Python libraries for effective data processing and analysis About This Book Learn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and Matplotlib Create, manipulate, and analyze your data to extract useful information to optimize your system A hands-on guide to help you learn data analysis using Python Who This Book Is For If you are a Python developer who wants to get started with data analysis and you need a quick introductory guide to the python data analysis libraries, then this book is for you. What You Will Learn Understand the importance of data analysis and get familiar with its processing steps Get acquainted with Numpy to use with arrays and array-oriented computing in data analysis Create effective visualizations to present your data using Matplotlib Process and analyze data using the time series capabilities of Pandas Interact with different kind of database systems, such as file, disk format, Mongo, and Redis Apply the supported Python package to data analysis applications through examples Explore predictive analytics and machine learning algorithms using Scikit-learn, a Python library In Detail Data analysis is the process of applying logical and analytical reasoning to study each component of data. Python is a multi-domain, high-level, programming language. It's often used as a scripting language because of its forgiving syntax and operability with a wide variety of different eco-systems. Python has powerful standard libraries or toolkits such as Pylearn2 and Hebel, which offers a fast, reliable, cross-platform environment for data analysis. With this book, we will get you started with Python data analysis and show you what its advantages are. The book starts by introducing the principles of data analysis and supported libraries, along with NumPy basics for statistic and data processing. Next it provides an overview of the Pandas package and uses its powerful features to solve data processing problems. Moving on, the book takes you through a brief overview of the Matplotlib API and some common plotting functions for DataFrame such as plot. Next, it will teach you to manipulate the time and data structure, and load and store data in a file or database using Python packages. The book will also teach you how to apply powerful packages in Python to process raw data into pure and helpful data using examples. Finally, the book gives you a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or build helpful products, such as recommendations and predictions using scikit-learn. Style and approach This is an easy-to-follow, step-by-step guide to get you familiar with data analysis and the libraries supported by Python. Topics are explained with real-world examples wherever required.