Getting Started with R

Author: Andrew P. Beckerman,Owen L. Petchey,Dylan Z. Childs

Publisher: Oxford University Press

ISBN: 0198787839

Category: Science

Page: 240

View: 2531

DOWNLOAD NOW »
R is rapidly becoming the standard software for statistical analyses, graphical presentation of data, and programming in the natural, physical, social, and engineering sciences. Getting Started with R is now the go-to introductory guide for biologists wanting to learn how to use R in their research. It teaches readers how to import, explore, graph, and analyse data, while keeping them focused on their ultimate goals: clearly communicating their data in oral presentations, posters, papers, and reports. It provides a consistent workflow for using R that is simple, efficient, reliable, and reproducible. This second edition has been updated and expanded while retaining the concise and engaging nature of its predecessor, offering an accessible and fun introduction to the packages dplyr and ggplot2 for data manipulation and graphing. It expands the set of basic statistics considered in the first edition to include new examples of a simple regression, a one-way and a two-way ANOVA. Finally, it introduces a new chapter on the generalised linear model. Getting Started with R is suitable for undergraduates, graduate students, professional researchers, and practitioners in the biological sciences.

25 Recipes for Getting Started with R

Author: Paul Teetor

Publisher: "O'Reilly Media, Inc."

ISBN: 1449303234

Category: Computers

Page: 44

View: 9283

DOWNLOAD NOW »
R is a powerful tool for statistics and graphics, but getting started with this language can be frustrating. This short, concise book provides beginners with a selection of how-to recipes to solve simple problems with R. Each solution gives you just what you need to know to use R for basic statistics, graphics, and regression. You'll find recipes on reading data files, creating data frames, computing basic statistics, testing means and correlations, creating a scatter plot, performing simple linear regression, and many more. These solutions were selected from O'Reilly's R Cookbook, which contains more than 200 recipes for R that you'll find useful once you move beyond the basics.

Getting Started with RStudio

Author: John Verzani

Publisher: "O'Reilly Media, Inc."

ISBN: 1449309038

Category: Computers

Page: 92

View: 843

DOWNLOAD NOW »
Annotation Dive into the RStudio Integrated Development Environment for using & programming R, the open source software for statistical computing & graphics. This text provides new & experienced users with an overview of RStudio, as well as hands-on instructions for analyzing data, generating reports & developing R software packages.

A Beginner's Guide to R

Author: Alain Zuur,Elena N. Ieno,Erik Meesters

Publisher: Springer Science & Business Media

ISBN: 9780387938370

Category: Computers

Page: 220

View: 2438

DOWNLOAD NOW »
Based on their extensive experience with teaching R and statistics to applied scientists, the authors provide a beginner's guide to R. To avoid the difficulty of teaching R and statistics at the same time, statistical methods are kept to a minimum. The text covers how to download and install R, import and manage data, elementary plotting, an introduction to functions, advanced plotting, and common beginner mistakes. This book contains everything you need to know to get started with R.

R for SAS and SPSS Users

Author: Robert A. Muenchen

Publisher: Springer Science & Business Media

ISBN: 1461406854

Category: Computers

Page: 686

View: 8202

DOWNLOAD NOW »
R is a powerful and free software system for data analysis and graphics, with over 5,000 add-on packages available. This book introduces R using SAS and SPSS terms with which you are already familiar. It demonstrates which of the add-on packages are most like SAS and SPSS and compares them to R's built-in functions. It steps through over 30 programs written in all three packages, comparing and contrasting the packages' differing approaches. The programs and practice datasets are available for download. The glossary defines over 50 R terms using SAS/SPSS jargon and again using R jargon. The table of contents and the index allow you to find equivalent R functions by looking up both SAS statements and SPSS commands. When finished, you will be able to import data, manage and transform it, create publication quality graphics, and perform basic statistical analyses. This new edition has updated programming, an expanded index, and even more statistical methods covered in over 25 new sections.

bookdown

Authoring Books and Technical Documents with R Markdown

Author: Yihui Xie

Publisher: CRC Press

ISBN: 1351792601

Category: Mathematics

Page: 138

View: 509

DOWNLOAD NOW »
bookdown: Authoring Books and Technical Documents with R Markdown presents a much easier way to write books and technical publications than traditional tools such as LaTeX and Word. The bookdown package inherits the simplicity of syntax and flexibility for data analysis from R Markdown, and extends R Markdown for technical writing, so that you can make better use of document elements such as figures, tables, equations, theorems, citations, and references. Similar to LaTeX, you can number and cross-reference these elements with bookdown. Your document can even include live examples so readers can interact with them while reading the book. The book can be rendered to multiple output formats, including LaTeX/PDF, HTML, EPUB, and Word, thus making it easy to put your documents online. The style and theme of these output formats can be customized. We used books and R primarily for examples in this book, but bookdown is not only for books or R. Most features introduced in this book also apply to other types of publications: journal papers, reports, dissertations, course handouts, study notes, and even novels. You do not have to use R, either. Other choices of computing languages include Python, C, C++, SQL, Bash, Stan, JavaScript, and so on, although R is best supported. You can also leave out computing, for example, to write a fiction. This book itself is an example of publishing with bookdown and R Markdown, and its source is fully available on GitHub.

R for Data Science

Import, Tidy, Transform, Visualize, and Model Data

Author: Hadley Wickham,Garrett Grolemund

Publisher: "O'Reilly Media, Inc."

ISBN: 1491910364

Category: Computers

Page: 520

View: 5124

DOWNLOAD NOW »
Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

R Programming By Example

Practical, hands-on projects to help you get started with R

Author: Omar Trejo Navarro

Publisher: Packt Publishing Ltd

ISBN: 1788291360

Category: Computers

Page: 470

View: 6399

DOWNLOAD NOW »
This step-by-step guide demonstrates how to build simple-to-advanced applications through examples in R using modern tools. About This Book Get a firm hold on the fundamentals of R through practical hands-on examples Get started with good R programming fundamentals for data science Exploit the different libraries of R to build interesting applications in R Who This Book Is For This books is for aspiring data science professionals or statisticians who would like to learn about the R programming language in a practical manner. Basic programming knowledge is assumed. What You Will Learn Discover techniques to leverage R's features, and work with packages Perform a descriptive analysis and work with statistical models using R Work efficiently with objects without using loops Create diverse visualizations to gain better understanding of the data Understand ways to produce good visualizations and create reports for the results Read and write data from relational databases and REST APIs, both packaged and unpackaged Improve performance by writing better code, delegating that code to a more efficient programming language, or making it parallel In Detail R is a high-level statistical language and is widely used among statisticians and data miners to develop analytical applications. Often, data analysis people with great analytical skills lack solid programming knowledge and are unfamiliar with the correct ways to use R. Based on the version 3.4, this book will help you develop strong fundamentals when working with R by taking you through a series of full representative examples, giving you a holistic view of R. We begin with the basic installation and configuration of the R environment. As you progress through the exercises, you'll become thoroughly acquainted with R's features and its packages. With this book, you will learn about the basic concepts of R programming, work efficiently with graphs, create publication-ready and interactive 3D graphs, and gain a better understanding of the data at hand. The detailed step-by-step instructions will enable you to get a clean set of data, produce good visualizations, and create reports for the results. It also teaches you various methods to perform code profiling and performance enhancement with good programming practices, delegation, and parallelization. By the end of this book, you will know how to efficiently work with data, create quality visualizations and reports, and develop code that is modular, expressive, and maintainable. Style and Approach This is an easy-to-understand guide filled with real-world examples, giving you a holistic view of R and practical, hands-on experience.

Head First Data Analysis

A Learner's Guide to Big Numbers, Statistics, and Good Decisions

Author: Michael Milton

Publisher: "O'Reilly Media, Inc."

ISBN: 0596153937

Category: Business & Economics

Page: 445

View: 758

DOWNLOAD NOW »
A guide for data managers and analyzers shares guidelines for identifying patterns, predicting future outcomes, and presenting findings to others; drawing on current research in cognitive science and learning theory while covering such additional topics as assessing data quality, handling ambiguous information, and organizing data within market groups. Original.

Deep Learning with R

Author: Francois Chollet,J.j. Allaire

Publisher: Pearson Professional

ISBN: 9781617295546

Category: Computers

Page: 360

View: 3499

DOWNLOAD NOW »
Introduces deep learning systems using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples.

The Art of R Programming

A Tour of Statistical Software Design

Author: Norman Matloff

Publisher: No Starch Press

ISBN: 1593273843

Category: Computers

Page: 400

View: 7623

DOWNLOAD NOW »
A guide to software development using the R programming language covers such topics as closures, recursion, anonymous functions, and debugging techniques.

Hands-On Programming with R

Write Your Own Functions and Simulations

Author: Garrett Grolemund

Publisher: "O'Reilly Media, Inc."

ISBN: 1449359108

Category: Computers

Page: 250

View: 2812

DOWNLOAD NOW »
Learn how to program by diving into the R language, and then use your newfound skills to solve practical data science problems. With this book, you’ll learn how to load data, assemble and disassemble data objects, navigate R’s environment system, write your own functions, and use all of R’s programming tools. RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You’ll gain valuable programming skills and support your work as a data scientist at the same time. Work hands-on with three practical data analysis projects based on casino games Store, retrieve, and change data values in your computer’s memory Write programs and simulations that outperform those written by typical R users Use R programming tools such as if else statements, for loops, and S3 classes Learn how to write lightning-fast vectorized R code Take advantage of R’s package system and debugging tools Practice and apply R programming concepts as you learn them

The R Book

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 1118448960

Category: Mathematics

Page: 1080

View: 442

DOWNLOAD NOW »
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

R For Dummies

Author: Andrie de Vries,Joris Meys

Publisher: John Wiley & Sons

ISBN: 1119055830

Category: Computers

Page: 432

View: 6021

DOWNLOAD NOW »
Mastering R has never been easier Picking up R can be tough, even for seasoned statisticians and data analysts. R For Dummies, 2nd Edition provides a quick and painless way to master all the R you'll ever need. Requiring no prior programming experience and packed with tons of practical examples, step-by-step exercises, and sample code, this friendly and accessible guide shows you how to know your way around lists, data frames, and other R data structures, while learning to interact with other programs, such as Microsoft Excel. You'll learn how to reshape and manipulate data, merge data sets, split and combine data, perform calculations on vectors and arrays, and so much more. R is an open source statistical environment and programming language that has become very popular in varied fields for the management and analysis of data. R provides a wide array of statistical and graphical techniques, and has become the standard among statisticians for software development and data analysis. R For Dummies, 2nd Edition takes the intimidation out of working with R and arms you with the knowledge and know-how to master the programming language of choice among statisticians and data analysts worldwide. Covers downloading, installing, and configuring R Includes tips for getting data in and out of R Offers advice on fitting regression models and ANOVA Provides helpful hints for working with graphics R For Dummies, 2nd Edition is an ideal introduction to R for complete beginners, as well as an excellent technical reference for experienced R programmers.

Learning RStudio for R Statistical Computing

Author: Mark P. J. Van der Loo

Publisher: Packt Publishing Ltd

ISBN: 1782160612

Category: Computers

Page: 126

View: 2425

DOWNLOAD NOW »
A practical tutorial covering how to leverage RStudio functionality to effectively perform R Development, analysis, and reporting with RStudio. The book is aimed at R developers and analysts who wish to do R statistical development while taking advantage of RStudio functionality to ease their development efforts. Familiarity with R is assumed. Those who want to get started with R development using RStudio will also find the book useful. Even if you already use R but want to create reproducible statistical analysis projects or extend R with self-written packages, this book shows how to quickly achieve this using RStudio.

R Cookbook

Proven Recipes for Data Analysis, Statistics, and Graphics

Author: Paul Teetor

Publisher: "O'Reilly Media, Inc."

ISBN: 9781449307264

Category: Computers

Page: 438

View: 8917

DOWNLOAD NOW »
With more than 200 practical recipes, this book helps you perform data analysis with R quickly and efficiently. The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression. Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you’re a beginner, R Cookbook will help get you started. If you’re an experienced data programmer, it will jog your memory and expand your horizons. You’ll get the job done faster and learn more about R in the process. Create vectors, handle variables, and perform other basic functions Input and output data Tackle data structures such as matrices, lists, factors, and data frames Work with probability, probability distributions, and random variables Calculate statistics and confidence intervals, and perform statistical tests Create a variety of graphic displays Build statistical models with linear regressions and analysis of variance (ANOVA) Explore advanced statistical techniques, such as finding clusters in your data "Wonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language—one practical example at a time."—Jeffrey Ryan, software consultant and R package author

Graphing Data with R

An Introduction

Author: John Jay Hilfiger

Publisher: "O'Reilly Media, Inc."

ISBN: 1491922567

Category: Computers

Page: 336

View: 7057

DOWNLOAD NOW »
It’s much easier to grasp complex data relationships with a graph than by scanning numbers in a spreadsheet. This introductory guide shows you how to use the R language to create a variety of useful graphs for visualizing and analyzing complex data for science, business, media, and many other fields. You’ll learn methods for highlighting important relationships and trends, reducing data to simpler forms, and emphasizing key numbers at a glance. Anyone who wants to analyze data will find something useful here—even if you don’t have a background in mathematics, statistics, or computer programming. If you want to examine data related to your work, this book is the ideal way to start. Get started with R by learning basic commands Build single variable graphs, such as dot and pie charts, box plots, and histograms Explore the relationship between two quantitative variables with scatter plots, high-density plots, and other techniques Use scatterplot matrices, 3D plots, clustering, heat maps, and other graphs to visualize relationships among three or more variables

Reproducible Research with R and R Studio

Author: Christopher Gandrud

Publisher: CRC Press

ISBN: 1466572841

Category: Mathematics

Page: 294

View: 4884

DOWNLOAD NOW »
Bringing together computational research tools in one accessible source, Reproducible Research with R and RStudio guides you in creating dynamic and highly reproducible research. Suitable for researchers in any quantitative empirical discipline, it presents practical tools for data collection, data analysis, and the presentation of results. With straightforward examples, the book takes you through a reproducible research workflow, showing you how to use: R for dynamic data gathering and automated results presentation knitr for combining statistical analysis and results into one document LaTeX for creating PDF articles and slide shows, and Markdown and HTML for presenting results on the web Cloud storage and versioning services that can store data, code, and presentation files; save previous versions of the files; and make the information widely available Unix-like shell programs for compiling large projects and converting documents from one markup language to another RStudio to tightly integrate reproducible research tools in one place Whether you’re an advanced user or just getting started with tools such as R and LaTeX, this book saves you time searching for information and helps you successfully carry out computational research. It provides a practical reproducible research workflow that you can use to gather and analyze data as well as dynamically present results in print and on the web. Supplementary files used for the examples and a reproducible research project are available on the author’s website.

An R and S-Plus Companion to Applied Regression

Author: John Fox

Publisher: SAGE

ISBN: 9780761922803

Category: Mathematics

Page: 312

View: 7308

DOWNLOAD NOW »
"This book fits right into a needed niche: rigorous enough to give full explanation of the power of the S language, yet accessible enough to assign to social science graduate students without fear of intimidation. It is a tremendous balance of applied statistical "firepower" and thoughtful explanation. It meets all of the important mechanical needs: each example is given in detail, code and data are freely available, and the nuances of models are given rather than just the bare essentials. It also meets some important theoretical needs: linear models, categorical data analysis, an introduction to applying GLMs, a discussion of model diagnostics, and useful instructions on writing customized functions. " —JEFF GILL, University of Florida, Gainesville