Gravitation and Spacetime

Author: Hans C. Ohanian,Remo Ruffini

Publisher: Cambridge University Press

ISBN: 1107012945

Category: Science

Page: 528

View: 4758

This text provides a quantitative introduction to general relativity for advanced undergraduate and graduate students.

Gravitational Collapse and Spacetime Singularities

Author: Pankaj S. Joshi

Publisher: Cambridge University Press

ISBN: 1139468146

Category: Science

Page: N.A

View: 2064

Physical phenomena in astrophysics and cosmology involve gravitational collapse in a fundamental way. The final fate of a massive star when it collapses under its own gravity at the end of its life cycle is one of the most important questions in gravitation theory and relativistic astrophysics, and is the foundation of black hole physics. General relativity predicts that continual gravitational collapse gives rise to a space-time singularity. Quantum gravity may take over in such regimes to resolve the classical space-time singularity. This book, first published in 2007, investigates these issues, and shows how the visible ultra-dense regions arise naturally and generically as an outcome of dynamical gravitational collapse. It will be of interest to graduate students and academic researchers in gravitation physics, fundamental physics, astrophysics, and cosmology. It includes a detailed review of research into gravitational collapse, and several examples of collapse models are investigated in detail.

Spacetime, Geometry and Gravitation

Author: Pankaj Sharan

Publisher: Springer Science & Business Media

ISBN: 3764399708

Category: Mathematics

Page: 355

View: 3780

This introductory textbook on the general theory of relativity presents a solid foundation for those who want to learn about relativity. The subject is presented in a physically intuitive, but mathematically rigorous style. The topic of relativity is covered in a broad and deep manner. Besides, the aim is that after reading the book a student should not feel discouraged when she opens advanced texts on general relativity for further reading. The book consists of three parts: An introduction to the general theory of relativity. Geometrical mathematical background material. Topics that include the action principle, weak gravitational fields and gravitational waves, Schwarzschild and Kerr solution, and the Friedman equation in cosmology. The book is suitable for advanced graduates and graduates, but also for established researchers wishing to be educated about the field.

Space, Time and Gravitation

An Outline of the General Relativity Theory

Author: Arthur S. Eddington,Sir Arthur Stanley Eddington

Publisher: Cambridge University Press

ISBN: 9780521337090

Category: Science

Page: 218

View: 2156

This classic book is essential reading for all those interested in the development of modern physics. Sir Arthur Eddington's account of the general theory of relativity, 'without,' as he says in his preface, 'introducing anything very technical in the way of mathematics, physics or philosophy', was first published in the exciting days of 1920 soon after the first objective tests of the theory had demonstrated its validity. The book was at once received with acclamation by reviewers and remains today one of the simplest and most straightforward accounts in print. The reviewer in the Athenaeum described it as 'a masterly book. The arrangement, the vigour and ease of the reasoning, the felicity of illustration, the clear, flexible prose and (we must mention it) the wit, make this book one of the most adequate and engaging attempts at the non-technical exposition of a scientific theory that it has ever been our good fortune to encounter.' This reissue includes a foreword by Sir Hermann Bondi, FRS, giving a brief appraisal of the book, and placing it in its historical and scientific context.

Gravitation and Experiment

Poincaré Seminar 2006

Author: Thibault Damour,Vincent Rivasseau

Publisher: Springer Science & Business Media

ISBN: 3764385243

Category: Science

Page: 138

View: 3858

This book offers a detailed, pedagogical introduction to general relativity. It includes a review of what may lie beyond and collects up-to-date essays on the experimental tests of this theory, including the precise timing of the double pulsar J0737-3039. Coverage also details the recent results of the Gravity Probe B mission.

The Theory of Space, Time and Gravitation

Author: V. Fock

Publisher: Elsevier

ISBN: 1483184900

Category: Science

Page: 460

View: 3585

The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two inertial frames. The text then ponders on general tensor analysis, including permissible transformations for space and time coordinates, parallel transport of a vector, covariant differentiation, and basic properties of the curvature tensor. The publication examines the formulation of relativity theory in arbitrary coordinates and principles of the theory of gravitation. Topics include equations of mathematical physics in arbitrary coordinates; integral form of the conservation laws in arbitrary coordinates; variational principle and the energy tensor; and comparison with the statement of the problem in Newtonian theory. The manuscript is a dependable reference for readers interested in the theory of space, time, and gravitation.

Foundations of Space-Time Theories

Author: John Earman,Clark N. Glymour,John J. Stachel

Publisher: U of Minnesota Press

ISBN: 9780816657520

Category: Science

Page: 480

View: 4535

Foundations of Space-Time Theories was first published in 1977. Minnesota Archive Editions uses digital technology to make long-unavailable books once again accessible, and are published unaltered from the original University of Minnesota Press editions. The essays in this volume are based on the papers given at a conference on the philosophical aspects of the space-time theory held under the auspices of the Minnesota Center for Philosophy of Science.

Gravitation and Relativity

International Series in Natural Philosophy

Author: M. G. Bowler

Publisher: Elsevier

ISBN: 1483151115

Category: Science

Page: 182

View: 7023

Gravitation and Relativity generalizes Isaac Newton’s theory of gravitation using the elementary tools of Albert Einstein’s special relativity. Topics covered include gravitational waves, martian electrodynamics, relativistic gravitational fields and gravitational forces, the distortion of reference frames, and the precession of the perihelion of Mercury. Black holes and the geometry of spacetime also receive consideration. This book is comprised of 10 chapters; the first of which briefly reviews special relativity, with the emphasis on the Lorentz covariance of the equations of physics. This topic is then followed by a short discussion on accelerations in the framework of special relativity. Two problems related to the gravitational deflection of light and how to detect a gravitational acceleration by observations within a freely falling laboratory are discussed in this book. The chapters that follow focus on the Eötvös-Dicke experiments that established the identity of inertial and gravitational mass; the equations of electrodynamics and electrostatics; force laws and equations of motion; and the precession of the perihelion of Mercury. The reader is also introduced to the nature of gravitational radiation; its generation and detection; and the relation between the metric tensor and gravitational potentials. The book concludes with a chapter on black holes and how they may manifest themselves to the astronomer. This monograph will appeal not only to professional physicists but also to undergraduates in physics who want to know a great deal about gravitation and relativity.

Inertia and Gravitation

The Fundamental Nature and Structure of Space-Time

Author: Herbert Pfister,Markus King

Publisher: Springer

ISBN: 3319150367

Category: Science

Page: 180

View: 3359

This book focuses on the phenomena of inertia and gravitation, one objective being to shed some new light on the basic laws of gravitational interaction and the fundamental nature and structures of spacetime. Chapter 1 is devoted to an extensive, partly new analysis of the law of inertia. The underlying mathematical and geometrical structure of Newtonian spacetime is presented from a four-dimensional point of view, and some historical difficulties and controversies - in particular the concepts of free particles and straight lines - are critically analyzed, while connections to projective geometry are also explored. The relativistic extensions of the law of gravitation and its intriguing consequences are studied in Chapter 2. This is achieved, following the works of Weyl, Ehlers, Pirani and Schild, by adopting a point of view of the combined conformal and projective structure of spacetime. Specifically, Mach’s fundamental critique of Newton’s concepts of ‘absolute space’ and ‘absolute time’ was a decisive motivation for Einstein’s development of general relativity, and his equivalence principle provided a new perspective on inertia. In Chapter 3 the very special mathematical structure of Einstein’s field equations is analyzed, and some of their remarkable physical predictions are presented. By analyzing different types of dragging phenomena, Chapter 4 reviews to what extent the equivalence principle is realized in general relativity - a question intimately connected to the ‘new force’ of gravitomagnetism, which was theoretically predicted by Einstein and Thirring but which was only recently experimentally confirmed and is thus of current interest.


Foundations and Frontiers

Author: T. Padmanabhan

Publisher: Cambridge University Press

ISBN: 1139485393

Category: Science

Page: N.A

View: 9784

Covering all aspects of gravitation in a contemporary style, this advanced textbook is ideal for graduate students and researchers in all areas of theoretical physics. The 'Foundation' section develops the formalism in six chapters, and uses it in the next four chapters to discuss four key applications - spherical spacetimes, black holes, gravitational waves and cosmology. The six chapters in the 'Frontier' section describe cosmological perturbation theory, quantum fields in curved spacetime, and the Hamiltonian structure of general relativity, among several other advanced topics, some of which are covered in-depth for the first time in a textbook. The modular structure of the book allows different sections to be combined to suit a variety of courses. Over 200 exercises are included to test and develop the reader's understanding. There are also over 30 projects, which help readers make the transition from the book to their own original research.

Gravitation and Inertia

Author: Ignazio Ciufolini,John Archibald Wheeler

Publisher: Princeton University Press

ISBN: 0691190194

Category: Science

Page: N.A

View: 2737

Einstein's standard and battle-tested geometric theory of gravity--spacetime tells mass how to move and mass tells spacetime how to curve--is expounded in this book by Ignazio Ciufolini and John Wheeler. They give special attention to the theory's observational checks and to two of its consequences: the predicted existence of gravitomagnetism and the origin of inertia (local inertial frames) in Einstein's general relativity: inertia here arises from mass there. The authors explain the modern understanding of the link between gravitation and inertia in Einstein's theory, from the origin of inertia in some cosmological models of the universe, to the interpretation of the initial value formulation of Einstein's standard geometrodynamics; and from the devices and the methods used to determine the local inertial frames of reference, to the experiments used to detect and measure the "dragging of inertial frames of reference." In this book, Ciufolini and Wheeler emphasize present, past, and proposed tests of gravitational interaction, metric theories, and general relativity. They describe the numerous confirmations of the foundations of geometrodynamics and some proposed experiments, including space missions, to test some of its fundamental predictions--in particular gravitomagnetic field or "dragging of inertial frames" and gravitational waves.

Introduction to Relativity

Author: William D. McGlinn

Publisher: JHU Press

ISBN: 9780801870477

Category: Science

Page: 205

View: 2446

"This book contains a tremendous amount of information for its size. The discussions are clear and to the point... Any teacher on this subject should seriously consider as a textbook." -- The Physicist

Gravitation and Gauge Symmetries

Author: M Blagojevic

Publisher: CRC Press

ISBN: 142003426X

Category: Science

Page: 522

View: 3917

In the course of the development of electromagnetic, weak and strong interactions, the concept of (internal) gauge invariance grew up and established itself as an unavoidable dynamical principle in particle physics. It is less known that the principle of equivalence, and the basic dynamical properties of the gravitational interaction can also be expressed as a (spacetime) gauge symmetry. Gravitation and Gauge Symmetries sheds light on the connection between the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory. The first part of the book gives a systematic account of the structure of gravity as a theory based on spacetime gauge symmetries. Some basic properties of space, time, and gravity are reviewed in the first, introductory chapter. The next chapter deals with elements of global Poincaré and conformal symmetries, which are necessary for the exposition of their localizations; the structure of the corresponding gauge theories of gravity is explored in chapters 3 and 4. Then, in chapters 5 and 6, we present the basic features of the constrained Hamiltonian of Poincaré gauge theory, discuss the relation between gauge symmetries and conservation laws, and introduce the concept of gravitational energy and other conserved quantities. The second part of the book explores the most promising attempts to build a unified field theory containing gravity, on the basis of the gauge principle. The author presents the possibility to constrict the theory of gravity as a nonlinear field theory in flat spacetime. The final chapters yield an exposition of the ideas of supersymmetry and supergravity, Kaluza-Klein theory, and string theory. Gravitation and Gauge Symmetries will be of interest to postgraduate students and researchers in gravitation, high energy physics and mathematical physics.

The Curvature of Spacetime

Newton, Einstein, and Gravitation

Author: Harald Fritzsch

Publisher: McGill-Queen's Press - MQUP

ISBN: 9780231118217

Category: Science

Page: 341

View: 5705

The internationally renowned physicist Harald Fritzsch deftly explains the meaning and far-flung implications of the general theory of relativity and other mysteries of modern physics by presenting an imaginary conversation among Newton, Einstein, and a fictitious contemporary particle physicist named Adrian Haller—the same device Fritzsch employed to great acclaim in his earlier book An Equation That Changed the World, which focused on the special theory of relativity. Einstein's theory of gravitation, his general theory of relativity, touches on basic questions of our existence. Matter, according to Einstein, has no existence independent of space and time. It is even capable of bending the structure of space and changing the course of time—it introduces a "curvature." Gravity emerges not as an actual physical force but as a consequence of space-time geometry. Even the apple that drops from the tree follows the curvature of time and space. In this entertaining and involving account of relativity, Newton serves as the skeptic and asks the questions a modern reader might ask. Einstein himself does the explaining, while Haller explains the new developments that have occurred since the general theory was proposed. The result is an intellectual roller-coaster ride in which concepts that have entered the vernacular become clear for the first time: the Big Bang, "black holes," elementary particles, and much more.

Inertia and Gravitation

From Aristotle's Natural Motion to Geodesic Worldlines in Curved Spacetime

Author: Vesselin Petkov

Publisher: Minkowski Institute Press

ISBN: 098798716X

Category: Inertia (Mechanics)

Page: 150

View: 650

This book fills a gap in the literature. So far there has been no book which deals with inertia and gravitation by explicitly addressing open questions and issues which have been hampering the proper understanding of these phenomena. The book places a strong emphasis on the physical understanding of the main aspects and features of inertia and gravitation. It discusses questions such as: Are inertial forces fictitious or real? Does Minkowski's four-dimensional formulation of special relativity provide an insight into the origin of inertia? Does mass increase relativistically? Why is the inertial mass equivalent to the gravitational mass? Are gravitational phenomena caused by gravitational interaction according to general relativity? Is there gravitational energy? Do gravitational waves carry gravitational energy? Can gravity be quantized?

Relativity, Gravitation and Cosmology

Author: Robert J. Lambourne

Publisher: Cambridge University Press

ISBN: 9780521131384

Category: Science

Page: 312

View: 7640

The textbook introduces students to basic geometric concepts, such as metrics, connections and curvature, before examining general relativity in more detail. It shows the observational evidence supporting the theory, and the description general relativity provides of black holes and cosmological spacetimes. --