Handbook of Discrete and Combinatorial Mathematics

Author: Kenneth H. Rosen

Publisher: CRC Press

ISBN: 135164405X

Category: Mathematics

Page: 1612

View: 8717

DOWNLOAD NOW »
Handbook of Discrete and Combinatorial Mathematics provides a comprehensive reference volume for mathematicians, computer scientists, engineers, as well as students and reference librarians. The material is presented so that key information can be located and used quickly and easily. Each chapter includes a glossary. Individual topics are covered in sections and subsections within chapters, each of which is organized into clearly identifiable parts: definitions, facts, and examples. Examples are provided to illustrate some of the key definitions, facts, and algorithms. Some curious and entertaining facts and puzzles are also included. Readers will also find an extensive collection of biographies. This second edition is a major revision. It includes extensive additions and updates. Since the first edition appeared in 1999, many new discoveries have been made and new areas have grown in importance, which are covered in this edition.

Handbook of Discrete and Computational Geometry, Second Edition

Author: Csaba D. Toth,Joseph O'Rourke,Jacob E. Goodman

Publisher: CRC Press

ISBN: 9781420035315

Category: Mathematics

Page: 1560

View: 4958

DOWNLOAD NOW »
While high-quality books and journals in this field continue to proliferate, none has yet come close to matching the Handbook of Discrete and Computational Geometry, which in its first edition, quickly became the definitive reference work in its field. But with the rapid growth of the discipline and the many advances made over the past seven years, it's time to bring this standard-setting reference up to date. Editors Jacob E. Goodman and Joseph O'Rourke reassembled their stellar panel of contributors, added manymore, and together thoroughly revised their work to make the most important results and methods, both classic and cutting-edge, accessible in one convenient volume. Now over more then 1500 pages, the Handbook of Discrete and Computational Geometry, Second Edition once again provides unparalleled, authoritative coverage of theory, methods, and applications. Highlights of the Second Edition: Thirteen new chapters: Five on applications and others on collision detection, nearest neighbors in high-dimensional spaces, curve and surface reconstruction, embeddings of finite metric spaces, polygonal linkages, the discrepancy method, and geometric graph theory Thorough revisions of all remaining chapters Extended coverage of computational geometry software, now comprising two chapters: one on the LEDA and CGAL libraries, the other on additional software Two indices: An Index of Defined Terms and an Index of Cited Authors Greatly expanded bibliographies

Handbook of Graph Theory, Second Edition

Author: Jonathan L. Gross,Jay Yellen,Ping Zhang

Publisher: CRC Press

ISBN: 1439880182

Category: Mathematics

Page: 1630

View: 8827

DOWNLOAD NOW »
In the ten years since the publication of the best-selling first edition, more than 1,000 graph theory papers have been published each year. Reflecting these advances, Handbook of Graph Theory, Second Edition provides comprehensive coverage of the main topics in pure and applied graph theory. This second edition—over 400 pages longer than its predecessor—incorporates 14 new sections. Each chapter includes lists of essential definitions and facts, accompanied by examples, tables, remarks, and, in some cases, conjectures and open problems. A bibliography at the end of each chapter provides an extensive guide to the research literature and pointers to monographs. In addition, a glossary is included in each chapter as well as at the end of each section. This edition also contains notes regarding terminology and notation. With 34 new contributors, this handbook is the most comprehensive single-source guide to graph theory. It emphasizes quick accessibility to topics for non-experts and enables easy cross-referencing among chapters.

Handbook of Geometric Constraint Systems Principles

Author: Meera Sitharam,Audrey St. John,Jessica Sidman

Publisher: CRC Press

ISBN: 1351647431

Category: Mathematics

Page: 578

View: 3146

DOWNLOAD NOW »
The Handbook of Geometric Constraint Systems Principles is an entry point to the currently used principal mathematical and computational tools and techniques of the geometric constraint system (GCS). It functions as a single source containing the core principles and results, accessible to both beginners and experts. The handbook provides a guide for students learning basic concepts, as well as experts looking to pinpoint specific results or approaches in the broad landscape. As such, the editors created this handbook to serve as a useful tool for navigating the varied concepts, approaches and results found in GCS research. Key Features: A comprehensive reference handbook authored by top researchers Includes fundamentals and techniques from multiple perspectives that span several research communities Provides recent results and a graded program of open problems and conjectures Can be used for senior undergraduate or graduate topics course introduction to the area Detailed list of figures and tables About the Editors: Meera Sitharam is currently an Associate Professor at the University of Florida’s Department of Computer & Information Science and Engineering. She received her Ph.D. at the University of Wisconsin, Madison. Audrey St. John is an Associate Professor of Computer Science at Mount Holyoke College, who received her Ph. D. from UMass Amherst. Jessica Sidman is a Professor of Mathematics on the John S. Kennedy Foundation at Mount Holyoke College. She received her Ph.D. from the University of Michigan.

A Beginner's Guide to Discrete Mathematics

Author: W.D. Wallis

Publisher: Springer Science & Business Media

ISBN: 9780817682866

Category: Mathematics

Page: 427

View: 7638

DOWNLOAD NOW »
Wallis's book on discrete mathematics is a resource for an introductory course in a subject fundamental to both mathematics and computer science, a course that is expected not only to cover certain specific topics but also to introduce students to important modes of thought specific to each discipline . . . Lower-division undergraduates through graduate students. —Choice reviews (Review of the First Edition) Very appropriately entitled as a 'beginner's guide', this textbook presents itself as the first exposure to discrete mathematics and rigorous proof for the mathematics or computer science student. —Zentralblatt Math (Review of the First Edition) This second edition of A Beginner’s Guide to Discrete Mathematics presents a detailed guide to discrete mathematics and its relationship to other mathematical subjects including set theory, probability, cryptography, graph theory, and number theory. This textbook has a distinctly applied orientation and explores a variety of applications. Key Features of the second edition: * Includes a new chapter on the theory of voting as well as numerous new examples and exercises throughout the book * Introduces functions, vectors, matrices, number systems, scientific notations, and the representation of numbers in computers * Provides examples which then lead into easy practice problems throughout the text and full exercise at the end of each chapter * Full solutions for practice problems are provided at the end of the book This text is intended for undergraduates in mathematics and computer science, however, featured special topics and applications may also interest graduate students.

Handbook of Combinatorial Designs, Second Edition

Author: Charles J. Colbourn,Jeffrey H. Dinitz

Publisher: CRC Press

ISBN: 1420010549

Category: Mathematics

Page: 1016

View: 8230

DOWNLOAD NOW »
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.

Mathematik und Plausibles Schließen

Band 2: Typen und Strukturen plausibler Folgerung

Author: G. Polya

Publisher: Birkhäuser

ISBN: 9783764307158

Category: Science

Page: 326

View: 4625

DOWNLOAD NOW »
10 in denen meine Beobachtungen meine Schlusse zu stutzen scheinen. Aber ich achte das Urteil des Lesers und will ihn nicht zwingen oder auf irgendeine unsaubere Weise dazu bringen, meine Schlusse anzu nehmen. Naturlich erheben die hier gebotenen Ansichten keinen Anspruch auf Endgultigkeit. Ich konnte in der Tat eine Reihe von Stellen ange ben, wo ich klar empfinde, dass eine grossere oder kleinere Verbesse rung am Platz ware. Ich glaube jedoch, dass die Hauptrichtung richtig ist, und ich hoffe, dass die Ausfuhrungen und vor allem die Beispiele in diesem Werk dazu beitragen mogen, die -Doppelnatun und die -komplementaren Aspekte) plausiblen, insbesondere induktiven Schliessens, zu erhellen, das zuweilen als -objektiv) und zuweilen als -subjektiv) erscheint. Stanford University Georg P6lya Mai 1953 VORWORT ZUR ZWEITEN AUFLAGE Die vorliegende zweite Auflage wurde erweitert durch einen An hang. Dieser enthalt einen Aufsatz -Heuristische Schlussweisen in der Zahlentheorie), entnommen dem American Mathematical Monthly mit der Genehmigung des herausgebenden Vereins, und zusatzliche Bemerkungen und Aufgaben zu verschiedenen Kapiteln. Herzlichen Dank Fraulein Dr. A. Roth fur die gewissenhafte Uber setzung und Frau H. Bretscher fur freundliche Hilfe."

Das BUCH der Beweise

Author: Martin Aigner,Günter M. Ziegler

Publisher: Springer-Verlag

ISBN: 3662064545

Category: Mathematics

Page: 247

View: 5187

DOWNLOAD NOW »
Die elegantesten mathematischen Beweise, spannend und für jeden Interessierten verständlich. "Der Beweis selbst, seine Ästhetik, seine Pointe geht ins Geschichtsbuch der Königin der Wissenschaften ein. Ihre Anmut offenbart sich in dem gelungenen und geschickt illustrierten Buch." Die Zeit

Handbook of Product Graphs, Second Edition

Author: Richard Hammack,Wilfried Imrich,Sandi Klavžar

Publisher: CRC Press

ISBN: 1439813051

Category: Computers

Page: 536

View: 2445

DOWNLOAD NOW »
Handbook of Product Graphs, Second Edition examines the dichotomy between the structure of products and their subgraphs. It also features the design of efficient algorithms that recognize products and their subgraphs and explores the relationship between graph parameters of the product and factors. Extensively revised and expanded, the handbook presents full proofs of many important results as well as up-to-date research and conjectures. Results and Algorithms New to the Second Edition: Cancellation results A quadratic recognition algorithm for partial cubes Results on the strong isometric dimension Computing the Wiener index via canonical isometric embedding Connectivity results A fractional version of Hedetniemi’s conjecture Results on the independence number of Cartesian powers of vertex-transitive graphs Verification of Vizing’s conjecture for chordal graphs Results on minimum cycle bases Numerous selected recent results, such as complete minors and nowhere-zero flows The second edition of this classic handbook provides a thorough introduction to the subject and an extensive survey of the field. The first three parts of the book cover graph products in detail. The authors discuss algebraic properties, such as factorization and cancellation, and explore interesting and important classes of subgraphs. The fourth part presents algorithms for the recognition of products and related classes of graphs. The final two parts focus on graph invariants and infinite, directed, and product-like graphs. Sample implementations of selected algorithms and other information are available on the book’s website, which can be reached via the authors’ home pages.

Discrete Mathematics with Proof

Author: Eric Gossett

Publisher: John Wiley & Sons

ISBN: 0470457937

Category: Mathematics

Page: 904

View: 4235

DOWNLOAD NOW »
"Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. - Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. - It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics."--Jacket.

Handbook of Combinatorial Designs

Author: C. J. Colbourn,Jeffrey H. Dinitz

Publisher: Chapman and Hall/CRC

ISBN: 9781584885061

Category: Mathematics

Page: 1016

View: 1134

DOWNLOAD NOW »
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence results. Over 30% longer than the first edition, the book builds upon the groundwork of its predecessor while retaining the original contributors' expertise. The first part contains a brief introduction and history of the subject. The following parts focus on four main classes of combinatorial designs: balanced incomplete block designs, orthogonal arrays and Latin squares, pairwise balanced designs, and Hadamard and orthogonal designs. Closely connected to the preceding sections, the next part surveys 65 additional classes of designs, such as balanced ternary, factorial, graphical, Howell, quasi-symmetric, and spherical. The final part presents mathematical and computational background related to design theory. New to the Second Edition An introductory part that provides a general overview and a historical perspective of the area New chapters on the history of design theory, various codes, bent functions, and numerous types of designs Fully updated tables, including BIBDs, MOLS, PBDs, and Hadamard matrices Nearly 2,200 references in a single bibliographic section Meeting the need for up-to-date and accessible tabular and reference information, this handbook provides the tools to understand combinatorial design theory and applications that span the entire discipline. The author maintains a website with more information.

Handbook of Linear Algebra, Second Edition

Author: Leslie Hogben

Publisher: CRC Press

ISBN: 1498785603

Category: Mathematics

Page: 1904

View: 4602

DOWNLOAD NOW »
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.

Schaum's Outline of Discrete Mathematics

Author: Seymor Lipschutz,Marc Lipson

Publisher: McGraw Hill Professional

ISBN: 9780071368414

Category: Mathematics

Page: 528

View: 5954

DOWNLOAD NOW »
The first edition of this book sold more than 100,000 copies—and this new edition will show you why! Schaum’s Outline of Discrete Mathematics shows you step by step how to solve the kind of problems you’re going to find on your exams. And this new edition features all the latest applications of discrete mathematics to computer science! This guide can be used as a supplement, to reinforce and strengthen the work you do with your class text. (It works well with virtually any discrete mathematics textbook.) But it is so comprehensive that it can even be used alone as a text in discrete mathematics or as independent study tool!

Handbook of Elliptic and Hyperelliptic Curve Cryptography

Author: Henri Cohen,Gerhard Frey,Roberto Avanzi,Christophe Doche,Tanja Lange,Kim Nguyen,Frederik Vercauteren

Publisher: CRC Press

ISBN: 9781420034981

Category: Mathematics

Page: 842

View: 802

DOWNLOAD NOW »
The discrete logarithm problem based on elliptic and hyperelliptic curves has gained a lot of popularity as a cryptographic primitive. The main reason is that no subexponential algorithm for computing discrete logarithms on small genus curves is currently available, except in very special cases. Therefore curve-based cryptosystems require much smaller key sizes than RSA to attain the same security level. This makes them particularly attractive for implementations on memory-restricted devices like smart cards and in high-security applications. The Handbook of Elliptic and Hyperelliptic Curve Cryptography introduces the theory and algorithms involved in curve-based cryptography. After a very detailed exposition of the mathematical background, it provides ready-to-implement algorithms for the group operations and computation of pairings. It explores methods for point counting and constructing curves with the complex multiplication method and provides the algorithms in an explicit manner. It also surveys generic methods to compute discrete logarithms and details index calculus methods for hyperelliptic curves. For some special curves the discrete logarithm problem can be transferred to an easier one; the consequences are explained and suggestions for good choices are given. The authors present applications to protocols for discrete-logarithm-based systems (including bilinear structures) and explain the use of elliptic and hyperelliptic curves in factorization and primality proving. Two chapters explore their design and efficient implementations in smart cards. Practical and theoretical aspects of side-channel attacks and countermeasures and a chapter devoted to (pseudo-)random number generation round off the exposition. The broad coverage of all- important areas makes this book a complete handbook of elliptic and hyperelliptic curve cryptography and an invaluable reference to anyone interested in this exciting field.

Pearls of discrete mathematics

Author: Martin J. Erickson

Publisher: CRC

ISBN: 9781439816165

Category: Computers

Page: 270

View: 9408

DOWNLOAD NOW »
This book presents intriguing examples, facts, theorems, and proofs from the world of discrete mathematics. The author presents special topics that are not found elsewhere, including the upward extension of Pascal's triangle, the problem of counting Rook paths and Queen paths, higher-dimensional tic-tac-toe, recurrence relations and generating functions, the pigeonhole principle, information theory and codes, and game theory. He also explores connections between discrete structures and other branches of mathematics, such as combinatorics and algebra. The text includes examples, exercises, and appendices containing Mathematica ® calculations and related Internet resources.

Handbook of Large-Scale Random Networks

Author: Bela Bollobas,Robert Kozma,Dezso Miklos

Publisher: Springer Science & Business Media

ISBN: 3540693955

Category: Mathematics

Page: 600

View: 2782

DOWNLOAD NOW »
With the advent of digital computers more than half a century ago, - searchers working in a wide range of scienti?c disciplines have obtained an extremely powerful tool to pursue deep understanding of natural processes in physical, chemical, and biological systems. Computers pose a great ch- lenge to mathematical sciences, as the range of phenomena available for rigorous mathematical analysis has been enormously expanded, demanding the development of a new generation of mathematical tools. There is an explosive growth of new mathematical disciplines to satisfy this demand, in particular related to discrete mathematics. However, it can be argued that at large mathematics is yet to provide the essential breakthrough to meet the challenge. The required paradigm shift in our view should be compa- ble to the shift in scienti?c thinking provided by the Newtonian revolution over 300 years ago. Studies of large-scale random graphs and networks are critical for the progress, using methods of discrete mathematics, probabil- tic combinatorics, graph theory, and statistical physics. Recent advances in large scale random network studies are described in this handbook, which provides a signi?cant update and extension - yond the materials presented in the “Handbook of Graphs and Networks” published in 2003 by Wiley. The present volume puts special emphasis on large-scale networks and random processes, which deemed as crucial for - tureprogressinthe?eld. Theissuesrelatedtorandomgraphsandnetworks pose very di?cult mathematical questions.

DISCRETE MATHEMATICS WITH PROOF, 2ND ED

Author: Eric Gossett

Publisher: N.A

ISBN: 9788126527588

Category:

Page: 928

View: 8667

DOWNLOAD NOW »
Market_Desc: As a textbook for discrete mathematics courses at the sophomore and/or junior level for both mathematics and computer science majors; and academic libraries. A prerequisite for this book includes completion of the introductory calculus sequence. Special Features: · Emphasizes proof (combinatorial and non-combinatorial) throughout in the text and exercises, and homework problems have been designed to reinforce the book's main concepts· Contains many examples that are not present in most discrete mathematics books, including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, Persian rugs, adaptive quadrature, the Josephus problem, the five color theorem, and relational databases· Features of the new edition include an increased use of combinatorial proofs, many new exercises, an extended discussion on elementary number theory, a complete reorganization of the definitions and theorems, among others· Supplemented with an Instructor's Manual containing detailed solutions to every exercise (available upon request to the Publisher). Detailed solutions are also available in the back of the book for selected exercises.· Includes Quick Check problems at critical points in the reading, and it is intended for these problems to be solved before moving on to the next section in the chapter. Also, many worked examples can be found throughout, which are used to motivate the presented theorems and illustrate the conclusion of a theorem.· Features many important examples from the field of computer science, including the Halting problem, Shannon's mathematical model of information, XML, and Normal Forms in relational databases About The Book: Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations.In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.

Codierungstheorie

Konstruktion und Anwendung linearer Codes

Author: Anton Betten,Harald Fripertinger,Adalbert Kerber,Alfred Wassermann,Karl-Heinz Zimmermann

Publisher: Springer-Verlag

ISBN: 3642589731

Category: Computers

Page: 338

View: 1659

DOWNLOAD NOW »
Diese Einführung in die Theorie der linearen Codes behandelt besonders ausführlich zyklische Codes. Daneben liegt ein Schwerpunkt auf computerunterstützten Methoden, insbesondere für die Bestimmung der Minimaldistanz linearer Codes, für die Abzählung der Isometrieklassen linearer Codes sowie Blockcodes und für die Erzeugung von Repräsentantensystemen dieser Klassen.