Author: N.A

Publisher: Academic Press

ISBN: 9780080874562

Category: Mathematics

Page: 406

View: 4222

Initial-Boundary Value Problems and the Navier-Stokes Equations

Skip to content
# Search Results for: **initial-boundary-value-problems-and-the-navier-stokes-equations-pure-and-applied-mathematics-academic-pr**

DOWNLOAD NOW »

Initial-Boundary Value Problems and the Navier-Stokes Equations

DOWNLOAD NOW »

Die mathematische Modellierung von Phänomenen und Prozessen in den Natur- und Technikwissenschaften, zunehmend auch in den Lebenswissenschaften, führt oftmals auf Differentialgleichungen. Das Anliegen dieses Lehrbuchs ist die rasche und doch verständliche Heranführung an (funktional-)analytische Methoden, die die Behandlung linearer und nichtlinearer Rand- und Anfangswertprobleme gestatten: Fixpunktprinzipien, Kompaktheits- und Monotonieargumente, variationelle Methoden und die Konstruktion von Näherungslösungen. Diese tragenden Methoden und Techniken werden angewandt, um klassische und schwache Lösungen von gewöhnlichen Randwertproblemen, Variationsproblemen und Evolutionsgleichungen (der abstrakten Formulierung zeitabhängiger partieller Differentialgleichungen) zu studieren.

DOWNLOAD NOW »

Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.

DOWNLOAD NOW »

Initial-Boundary Value Problems and the Navier-Stokes Equations gives an introduction to the vast subject of initial and initial-boundary value problems for PDEs. Applications to parabolic and hyperbolic systems are emphasized in this text. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The book explains the principles of these subjects. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. Audience: when the book was written, the main intent was to write a text on initial-boundary value problems that was accessible to a rather wide audience. Functional analytical prerequisites were kept to a minimum or were developed in the book. Boundary conditions are analyzed without first proving trace theorems, and similar simplifications have been used throughout. This book continues to be useful to researchers and graduate students in applied mathematics and engineering.

DOWNLOAD NOW »

DOWNLOAD NOW »

DOWNLOAD NOW »

This volume contains a multiplicity of approaches brought to bear on problems varying from the formation of caustics and the propagation of waves at a boundary, to the examination of viscous boundary layers. It examines the foundations of the theory of high- frequency electromagnetic waves in a dielectric or semiconducting medium. Nor are unifying themes entirely absent from nonlinear analysis: one chapter considers microlocal analysis, including paradifferential operator calculus, on Morrey spaces, and connections with various classes of partial differential equations.

DOWNLOAD NOW »

DOWNLOAD NOW »

DOWNLOAD NOW »

Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.

DOWNLOAD NOW »

DOWNLOAD NOW »

DOWNLOAD NOW »

DOWNLOAD NOW »

DOWNLOAD NOW »

DOWNLOAD NOW »

For more than 250 years partial di?erential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at ?rst and then those originating from - man activity and technological development. Mechanics, physics and their engineering applications were the ?rst to bene?t from the impact of partial di?erential equations on modeling and design, but a little less than a century ago the Schr ̈ odinger equation was the key opening the door to the application of partial di?erential equations to quantum chemistry, for small atomic and molecular systems at ?rst, but then for systems of fast growing complexity. The place of partial di?erential equations in mathematics is a very particular one: initially, the partial di?erential equations modeling natural phenomena were derived by combining calculus with physical reasoning in order to - press conservation laws and principles in partial di?erential equation form, leading to the wave equation, the heat equation, the equations of elasticity, the Euler and Navier–Stokes equations for ?uids, the Maxwell equations of electro-magnetics, etc. It is in order to solve ‘constructively’ the heat equation that Fourier developed the series bearing his name in the early 19th century; Fourier series (and later integrals) have played (and still play) a fundamental roleinbothpureandappliedmathematics,includingmanyareasquiteremote from partial di?erential equations. On the other hand, several areas of mathematics such as di?erential ge- etry have bene?ted from their interactions with partial di?erential equations.

DOWNLOAD NOW »

DOWNLOAD NOW »

This book is largely devoted to two special aspects of fluid mechanics: the complicated logical relation between theory and experiment, and applications of symmetry concepts.

DOWNLOAD NOW »

Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier–Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities and inviscid dissipation energy; validity of the idealized model incorporating local isotropy, homogeneity, and universality of small scales of high Reynolds numbers, Lagrangian statistics, and measurements; and subrigid-scale modeling and hybrid methods involving a mix of Reynolds-averaged Navier–Stokes (RANS), large-eddy simulations (LES), and direct numerical simulations (DNS). By sharing their expertise and recent research results, the authoritative contributors in Mathematical and Physical Theory of Turbulence promote further advances in the field, benefiting applied mathematicians, physicists, and engineers involved in understanding the complex issues of the turbulence problem.

DOWNLOAD NOW »

"Based on the International Conference on Optimal Control of Differential Equations held recently at Ohio University, Athens, this Festschrift to honor the sixty-fifth birthday of Constantin Corduneanu an outstanding researcher in differential and integral equations provides in-depth coverage of recent advances, applications, and open problems relevant to mathematics and physics. Introduces new results as well as novel methods and techniques!"

Full eBook Read and Download

Author: N.A

Publisher: Academic Press

ISBN: 9780080874562

Category: Mathematics

Page: 406

View: 4222

Initial-Boundary Value Problems and the Navier-Stokes Equations

*Eine integrierte Einführung in Randwertprobleme und Evolutionsgleichungen für Studierende*

Author: Etienne Emmrich

Publisher: Springer-Verlag

ISBN: 332280240X

Category: Mathematics

Page: 300

View: 6941

Die mathematische Modellierung von Phänomenen und Prozessen in den Natur- und Technikwissenschaften, zunehmend auch in den Lebenswissenschaften, führt oftmals auf Differentialgleichungen. Das Anliegen dieses Lehrbuchs ist die rasche und doch verständliche Heranführung an (funktional-)analytische Methoden, die die Behandlung linearer und nichtlinearer Rand- und Anfangswertprobleme gestatten: Fixpunktprinzipien, Kompaktheits- und Monotonieargumente, variationelle Methoden und die Konstruktion von Näherungslösungen. Diese tragenden Methoden und Techniken werden angewandt, um klassische und schwache Lösungen von gewöhnlichen Randwertproblemen, Variationsproblemen und Evolutionsgleichungen (der abstrakten Formulierung zeitabhängiger partieller Differentialgleichungen) zu studieren.

Author: Michael Oberguggenberger,Michael Grosser,Michael Kunzinger,Gunther Hormann

Publisher: CRC Press

ISBN: 9780849306495

Category: Mathematics

Page: 400

View: 3821

Questions regarding the interplay of nonlinearity and the creation and propagation of singularities arise in a variety of fields-including nonlinear partial differential equations, noise-driven stochastic partial differential equations, general relativity, and geometry with singularities. A workshop held at the Erwin-Schrödinger International Institute for Mathematical Physics in Vienna investigated these questions and culminated in this volume of invited papers from experts in the fields of nonlinear partial differential equations, structure theory of generalized functions, geometry and general relativity, stochastic partial differential equations, and nonstandard analysis. The authors provide the latest research relevant to work in partial differential equations, mathematical physics, and nonlinear analysis. With a focus on applications, this books provides a compilation of recent approaches to the problem of singularities in nonlinear models. The theory of differential algebras of generalized functions serves as the central theme of the project, along with its interrelations with classical methods.

Author: Heinz-Otto Kreiss,Jens Lorenz

Publisher: SIAM

ISBN: 0898715652

Category: Science

Page: 420

View: 5443

Initial-Boundary Value Problems and the Navier-Stokes Equations gives an introduction to the vast subject of initial and initial-boundary value problems for PDEs. Applications to parabolic and hyperbolic systems are emphasized in this text. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The book explains the principles of these subjects. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. Audience: when the book was written, the main intent was to write a text on initial-boundary value problems that was accessible to a rather wide audience. Functional analytical prerequisites were kept to a minimum or were developed in the book. Boundary conditions are analyzed without first proving trace theorems, and similar simplifications have been used throughout. This book continues to be useful to researchers and graduate students in applied mathematics and engineering.

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Electronic data processing

Page: N.A

View: 4101

Author: Stanford University. Dept. of Mechanical Engineering. Division of Applied Mechanics,J. C. Simo,F. Armero

Publisher: N.A

ISBN: N.A

Category:

Page: 54

View: 9350

Author: Jeffrey Rauch,Michael Taylor

Publisher: Springer

ISBN: 9780387982007

Category: Science

Page: 158

View: 8004

This volume contains a multiplicity of approaches brought to bear on problems varying from the formation of caustics and the propagation of waves at a boundary, to the examination of viscous boundary layers. It examines the foundations of the theory of high- frequency electromagnetic waves in a dielectric or semiconducting medium. Nor are unifying themes entirely absent from nonlinear analysis: one chapter considers microlocal analysis, including paradifferential operator calculus, on Morrey spaces, and connections with various classes of partial differential equations.

*proceedings of the Second Symposium on High Performance Computing, Montpellier, France, 7-9 October, 1991*

Author: M. Durand,F. El Dabaghi

Publisher: North-Holland

ISBN: N.A

Category: Computers

Page: 673

View: 3053

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 2355

Author: A.V. Babin,M.I. Vishik

Publisher: Elsevier

ISBN: 9780080875460

Category: Mathematics

Page: 531

View: 8957

Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 547

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 9890

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Electronic journals

Page: N.A

View: 7359

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Aeronautics

Page: N.A

View: 7148

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Mechanics, Applied

Page: N.A

View: 419

*Modelling and Numerical Simulation*

Author: Roland Glowinski,Pekka Neittaanmäki

Publisher: Springer Science & Business Media

ISBN: 1402087586

Category: Science

Page: 292

View: 9385

For more than 250 years partial di?erential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at ?rst and then those originating from - man activity and technological development. Mechanics, physics and their engineering applications were the ?rst to bene?t from the impact of partial di?erential equations on modeling and design, but a little less than a century ago the Schr ̈ odinger equation was the key opening the door to the application of partial di?erential equations to quantum chemistry, for small atomic and molecular systems at ?rst, but then for systems of fast growing complexity. The place of partial di?erential equations in mathematics is a very particular one: initially, the partial di?erential equations modeling natural phenomena were derived by combining calculus with physical reasoning in order to - press conservation laws and principles in partial di?erential equation form, leading to the wave equation, the heat equation, the equations of elasticity, the Euler and Navier–Stokes equations for ?uids, the Maxwell equations of electro-magnetics, etc. It is in order to solve ‘constructively’ the heat equation that Fourier developed the series bearing his name in the early 19th century; Fourier series (and later integrals) have played (and still play) a fundamental roleinbothpureandappliedmathematics,includingmanyareasquiteremote from partial di?erential equations. On the other hand, several areas of mathematics such as di?erential ge- etry have bene?ted from their interactions with partial di?erential equations.

Author: N.A

Publisher: N.A

ISBN: N.A

Category: American literature

Page: N.A

View: 2350

*a study in logic, fact, and similitude*

Author: Garrett Birkhoff

Publisher: Greenwood Pub Group

ISBN: N.A

Category: Mathematics

Page: 184

View: 597

This book is largely devoted to two special aspects of fluid mechanics: the complicated logical relation between theory and experiment, and applications of symmetry concepts.

Author: John Cannon,Bhimsen Shivamoggi

Publisher: CRC Press

ISBN: 1420014978

Category: Science

Page: 208

View: 2355

Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier–Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities and inviscid dissipation energy; validity of the idealized model incorporating local isotropy, homogeneity, and universality of small scales of high Reynolds numbers, Lagrangian statistics, and measurements; and subrigid-scale modeling and hybrid methods involving a mix of Reynolds-averaged Navier–Stokes (RANS), large-eddy simulations (LES), and direct numerical simulations (DNS). By sharing their expertise and recent research results, the authoritative contributors in Mathematical and Physical Theory of Turbulence promote further advances in the field, benefiting applied mathematicians, physicists, and engineers involved in understanding the complex issues of the turbulence problem.

Author: Nicolae H. Pavel

Publisher: CRC Press

ISBN: 9780824792343

Category: Mathematics

Page: 352

View: 3876

"Based on the International Conference on Optimal Control of Differential Equations held recently at Ohio University, Athens, this Festschrift to honor the sixty-fifth birthday of Constantin Corduneanu an outstanding researcher in differential and integral equations provides in-depth coverage of recent advances, applications, and open problems relevant to mathematics and physics. Introduces new results as well as novel methods and techniques!"