Introduction to Quantum Groups and Crystal Bases

Author: Jin Hong,Seok-Jin Kang

Publisher: American Mathematical Soc.

ISBN: 0821828746

Category: Mathematics

Page: 307

View: 9849

The notion of a ``quantum group'' was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C^*$-algebras. In particular, the theory of ``crystal bases'' or ``canonical bases'' developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups. The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.

Lectures on Quantum Groups

Author: Jens Carsten Jantzen

Publisher: American Mathematical Soc.

ISBN: 0821804782

Category: Mathematics

Page: 266

View: 798

The material is very well motivated ... Of the various monographs available on quantum groups, this one ... seems the most suitable for most mathematicians new to the subject ... will also be appreciated by a lot of those with considerably more experience. --Bulletin of the London Mathematical Society Since its origin, the theory of quantum groups has become one of the most fascinating topics of modern mathematics, with numerous applications to several sometimes rather disparate areas, including low-dimensional topology and mathematical physics. This book is one of the first expositions that is specifically directed to students who have no previous knowledge of the subject. The only prerequisite, in addition to standard linear algebra, is some acquaintance with the classical theory of complex semisimple Lie algebras. Starting with the quantum analog of $\mathfrak{sl}_2$, the author carefully leads the reader through all the details necessary for full understanding of the subject, particularly emphasizing similarities and differences with the classical theory. The final chapters of the book describe the Kashiwara-Lusztig theory of so-called crystal (or canonical) bases in representations of complex semisimple Lie algebras. The choice of the topics and the style of exposition make Jantzen's book an excellent textbook for a one-semester course on quantum groups.

Introduction to Kac-Moody Algebra

Author: Zhexian Wan

Publisher: World Scientific

ISBN: 9789810202248

Category: Mathematics

Page: 159

View: 8534

This book is an introduction to a rapidly growing subject of modern mathematics, the Kac-Moody algebra, which was introduced by V Kac and R Moody simultanously and independently in 1968.

Crystal Bases

Representations and Combinatorics

Author: Daniel Bump,Anne Schilling

Publisher: World Scientific Publishing Company

ISBN: 9814733466

Category: Mathematics

Page: 292

View: 3666

This unique book provides the first introduction to crystal base theory from the combinatorial point of view. Crystal base theory was developed by Kashiwara and Lusztig from the perspective of quantum groups. Its power comes from the fact that it addresses many questions in representation theory and mathematical physics by combinatorial means. This book approaches the subject directly from combinatorics, building crystals through local axioms (based on ideas by Stembridge) and virtual crystals. It also emphasizes parallels between the representation theory of the symmetric and general linear groups and phenomena in combinatorics. The combinatorial approach is linked to representation theory through the analysis of Demazure crystals. The relationship of crystals to tropical geometry is also explained. Request Inspection Copy Contents: IntroductionKashiwara CrystalsCrystals of TableauxStembridge CrystalsVirtual, Fundamental, and Normal CrystalsCrystals of Tableaux IIInsertion AlgorithmsThe Plactic MonoidBicrystals and the Littlewood–Richardson RuleCrystals for Stanley Symmetric FunctionsPatterns and the Weyl Group ActionThe β∞ CrystalDemazure CrystalsThe ⋆-Involution of β∞Crystals and Tropical GeometryFurther Topics Readership: Graduate students and researchers interested in understanding from a viewpoint of combinatorics on crystal base theory.

Introduction to Quantum Groups

Author: George Lusztig

Publisher: Springer Science & Business Media

ISBN: 9780817647179

Category: Mathematics

Page: 352

View: 7366

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.

Quantum Groups

Proceedings of a Conference in Memory of Joseph Donin, July 5-12, 2004, Technion-Israel, Institute of Technology, Haifa, Israel

Author: Joseph Donin

Publisher: American Mathematical Soc.

ISBN: 0821837133

Category: Mathematics

Page: 336

View: 5839

The papers in this volume are based on the talks given at the conference on quantum groups dedicated to the memory of Joseph Donin, which was held at the Technion Institute, Haifa, Israel in July 2004. A survey of Donin's distinguished mathematical career is included. Several articles, which were directly influenced by the research of Donin and his colleagues, deal with invariant quantization, dynamical $R$-matrices, Poisson homogeneous spaces, and reflection equation algebras. The topics of other articles include Hecke symmetries, orbifolds, set-theoretic solutions to the pentagon equations, representations of quantum current algebras, unipotent crystals, the Springer resolution, the Fourier transform on Hopf algebras, and, as a change of pace, the combinatorics of smoothly knotted surfaces. The articles all contain important new contributions to their respective areas and will be of great interest to graduate students and research mathematicians interested in Hopf algebras, quantum groups, and applications.

Representations of Algebraic Groups, Quantum Groups and Lie Algebras

AMS-IMS-SIAM Joint Summer Research Conference, July 11-15, 2004, Snowbird Resort, Snowbird, Utah

Author: Georgia Benkart

Publisher: American Mathematical Soc.

ISBN: 0821839241

Category: Mathematics

Page: 254

View: 2116

The book contains several well-written, accessible survey papers in many interrelated areas of current research. These areas cover various aspects of the representation theory of Lie algebras, finite groups of Lie types, Hecke algebras, and Lie super algebras. Geometric methods have been instrumental in representation theory, and these proceedings include surveys on geometric as well as combinatorial constructions of the crystal basis for representations of quantum groups. Humphreys' paper outlines intricate connections among irreducible representations of certain blocks of reduced enveloping algebras of semi-simple Lie algebras in positive characteristic, left cells in two sided cells of affine Weyl groups, and the geometry of the nilpotent orbits. All these papers provide the reader with a broad picture of the interaction of many different research areas and should be helpful to those who want to have a glimpse of current research involving representation theory.

Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics

Author: Pramod M. Achar,Dijana Jakelić,Kailash C. Misra,Milen Yakimov

Publisher: American Mathematical Society

ISBN: 0821898523

Category: Mathematics

Page: 280

View: 1323

This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.

Encyclopedia of mathematical physics

Author: Sheung Tsun Tsou

Publisher: Academic Pr

ISBN: 9780125126601

Category: Science

Page: 3500

View: 425

The Encyclopedia of Mathematical Physics provides a complete resource for researchers, students and lecturers with an interest in mathematical physics. It enables readers to access basic information on topics peripheral to their own areas, to provide a repository of the core information in the area that can be used to refresh the researcher's own memory banks, and aid teachers in directing students to entries relevant to their course-work. The Encyclopedia does contain information that has been distilled, organised and presented as a complete reference tool to the user and a landmark to the body of knowledge that has accumulated in this domain. It also is a stimulus for new researchers working in mathematical physics or in areas using the methods originated from work in mathematical physics by providing them with focused high quality background information. * First comprehensive interdisciplinary coverage * Mathematical Physics explained to stimulate new developments and foster new applications of its methods to other fields * Written by an international group of experts * Contains several undergraduate-level introductory articles to facilitate acquisition of new expertise * Thematic index and extensive cross-referencing to provide easy access and quick search functionality * Also available online with active linking.

A Guide to Quantum Groups

Author: Vyjayanthi Chari,Andrew N. Pressley

Publisher: Cambridge University Press

ISBN: 9780521558846

Category: Mathematics

Page: 651

View: 7665

Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. This book gives a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Researchers in mathematics and theoretical physics will enjoy this book.

A Course in Algebra

Author: Ėrnest Borisovich Vinberg

Publisher: American Mathematical Soc.

ISBN: 9780821834138

Category: Mathematics

Page: 511

View: 1502

This is a comprehensive textbook on modern algebra written by an internationally renowned specialist. It covers material traditionally found in advanced undergraduate and basic graduate courses and presents it in a lucid style. The author includes almost no technically difficult proofs, and reflecting his point of view on mathematics, he tries wherever possible to replace calculations and difficult deductions with conceptual proofs and to associate geometric images to algebraic objects. The effort spent on the part of students in absorbing these ideas will pay off when they turn to solving problems outside of this textbook.Another important feature is the presentation of most topics on several levels, allowing students to move smoothly from initial acquaintance with the subject to thorough study and a deeper understanding. Basic topics are included, such as algebraic structures, linear algebra, polynomials, and groups, as well as more advanced topics, such as affine and projective spaces, tensor algebra, Galois theory, Lie groups, and associative algebras and their representations. Some applications of linear algebra and group theory to physics are discussed. The book is written with extreme care and contains over 200 exercises and 70 figures. It is ideal as a textbook and also suitable for independent study for advanced undergraduates and graduate students.

Recent Developments in Lie Algebras, Groups, and Representation Theory

2009-2011 Southeastern Lie Theory Workshop Series : Combinatorial Lie Theory and Applications, October 9-11, 2009, North Carolina State University : Homological Methods in Representation Theory, May 22-24, 2010, University of Georgia : Finite and Algebraic Groups, June 1-4, 2011, University of Virginia

Author: Kailash C. Misra,Daniel Ken Nakano,Brian Parshall

Publisher: American Mathematical Soc.

ISBN: 0821869175

Category: Mathematics

Page: 310

View: 4856

This book contains the proceedings of the 2009-2011 Southeastern Lie Theory Workshop Series, held October 9-11, 2009 at North Carolina State University, May 22-24, 2010, at the University of Georgia, and June 1-4, 2011 at the University of Virginia. Some of the articles, written by experts in the field, survey recent developments while others include new results in Lie algebras, quantum groups, finite groups, and algebraic groups.

Representations of Quantum Algebras and Combinatorics of Young Tableaux

Author: Susumu Ariki

Publisher: American Mathematical Soc.

ISBN: 0821832328

Category: Mathematics

Page: 158

View: 9421

Another new title in the popular ULECT series; affordably-priced, softcover, advanced-level topics; presents a great entry point into a rapidly-developing topic area; self-contained and suitable for use as an independent study text.

Algebraic Groups and Quantum Groups

International Conference on Representation Theory of Algebraic Groups and Quantum Groups, August 2-6, 2010, Nagoya University, Nagoya, Japan

Author: Susumu Ariki

Publisher: American Mathematical Soc.

ISBN: 0821853171

Category: Mathematics

Page: 286

View: 2071

This volume contains the proceedings of the tenth international conference on Representation Theory of Algebraic Groups and Quantum Groups, held August 2-6, 2010, at Nagoya University, Nagoya, Japan. The survey articles and original papers contained in this volume offer a comprehensive view of current developments in the field. Among others reflecting recent trends, one central theme is research on representations in the affine case. In three articles, the authors study representations of W-algebras and affine Lie algebras at the critical level, and three other articles are related to crystals in the affine case, that is, Mirkovic-Vilonen polytopes for affine type $A$ and Kerov-Kirillov-Reshetikhin type bijection for affine type $E_6$. Other contributions cover a variety of topics such as modular representation theory of finite groups of Lie type, quantum queer super Lie algebras, Khovanov's arc algebra, Hecke algebras and cyclotomic $q$-Schur algebras, $G_1T$-Verma modules for reductive algebraic groups, equivariant $K$-theory of quantum vector bundles, and the cluster algebra. This book is suitable for graduate students and researchers interested in geometric and combinatorial representation theory, and other related fields.

Quantum Groups and Lie Theory

Author: Andrew Pressley

Publisher: Cambridge University Press

ISBN: 9781139437028

Category: Mathematics

Page: 234

View: 6458

Since its genesis in the early 1980s, the subject of quantum groups has grown rapidly. By the late 1990s most of the foundational issues had been resolved and many of the outstanding problems clearly formulated. To take stock and to discuss the most fruitful directions for future research many of the world's leading figures in this area met at the Durham Symposium on Quantum Groups in the summer of 1999, and this volume provides an excellent overview of the material presented there. It includes important surveys of both cyclotomic Hecke algebras and the dynamical Yang-Baxter equation. Plus contributions which treat the construction and classification of quantum groups or the associated solutions of the quantum Yang-Baxter equation. The representation theory of quantum groups is discussed, as is the function algebra approach to quantum groups, and there is a new look at the origins of quantum groups in the theory of integrable systems.

Representation theory of algebraic groups and quantum groups

Author: Toshiaki Shōji

Publisher: Mathematical Soc of Japan

ISBN: 9784931469259

Category: Computers

Page: 490

View: 8056

This book is a collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. It presents a comprehensive overview of developments in representation theory of algebraic groups and quantum groups. Particularly noteworthy are papers containing remarkable results concerning Lusztig's conjecture on cells in affine Weyl groups. The following topics were discussed: cells in affine Weyl groups, tilting modules, tensorcategories attached to cells in affine Weyl groups, representations of algebraic groups in positive characteristic, representations of Hecke algebras, Ariki-Koike and cyclotomic $q$-Schur algebras, cellular algebras and diagram algebras, Gelfand-Graev representations of finite reductive groups, Greenfunctions associated to complex reflection groups, induction theorem for Springer representations, representations of Lie algebras in positive characteristic, representations of quantum affine algebras, extremal weight modules, crystal bases, tropical Robinson-Schensted-Knuth correspondence and more. The material is suitable for graduate students and research mathematicians interested in representation theory of algebraic groups, Hecke algebras, quantum groups, and combinatorial theory.Information for our distributors: Published for the Mathematical Society of Japan by Kinokuniya, Tokyo, and distributed worldwide, except in Japan, by the AMS. All commercial channel discounts apply.

Quantum Groups and Their Primitive Ideals

Author: Anthony Joseph

Publisher: Springer Science & Business Media

ISBN: 3642784003

Category: Mathematics

Page: 383

View: 7966

by a more general quadratic algebra (possibly obtained by deformation) and then to derive Rq [G] by requiring it to possess the latter as a comodule. A third principle is to focus attention on the tensor structure of the cat egory of (!; modules. This means of course just defining an algebra structure on Rq[G]; but this is to be done in a very specific manner. Concretely the category is required to be braided and this forces (9.4.2) the existence of an "R-matrix" satisfying in particular the quantum Yang-Baxter equation and from which the algebra structure of Rq[G] can be written down (9.4.5). Finally there was a search for a perfectly self-dual model for Rq[G] which would then be isomorphic to Uq(g). Apparently this failed; but V. G. Drinfeld found that it could be essentially made to work for the "Borel part" of Uq(g) denoted U (b) and further found a general construction (the Drinfeld double) q mirroring a Lie bialgebra. This gives Uq(g) up to passage to a quotient. One of the most remarkable aspects of the above superficially different ap proaches is their extraordinary intercoherence. In particular they essentially all lead for G semisimple to the same and hence "canonical", objects Rq[G] and Uq(g), though this epithet may as yet be premature.