Introduction to the Theory and Application of Differential Equations with Deviating Arguments

Author: L.E. El'sgol'ts,S.B. Norkin

Publisher: Academic Press

ISBN: 0080956149

Category: Computers

Page: 356

View: 9180

DOWNLOAD NOW »
Introduction to the Theory and Application of Differential Equations with Deviating Arguments 2nd edition is a revised and substantially expanded edition of the well-known book of L. E. El’sgol’ts published under this same title by Nauka in 1964. Extensions of the theory of differential equations with deviating argument as well as the stimuli of developments within various fields of science and technology contribute to the need for a new edition. This theory in recent years has attracted the attention of vast numbers of researchers, interested both in the theory and its applications. The development of the foundations of the theory of differential equations with a deviating argument is still far from complete. This situation, of course, leaves its mark on our suggestions to the reader of the book and prevents as orderly and systematic a presentation as is usual for mathematical literature. However, it is hoped that in spite of these deficiencies the book will prove useful as a first acquaintanceship with the theory of differential equations with a deviating argument.

Theory and Applications of Partial Functional Differential Equations

Author: Jianhong Wu

Publisher: Springer Science & Business Media

ISBN: 1461240506

Category: Mathematics

Page: 432

View: 4516

DOWNLOAD NOW »
Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.

Functional Differential Equations

Advances and Applications

Author: Constantin Corduneanu,Yizeng Li,Mehran Mahdavi

Publisher: John Wiley & Sons

ISBN: 1119189489

Category: Mathematics

Page: 368

View: 7993

DOWNLOAD NOW »
Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Ordinary Differential Equations with Applications

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 0387357947

Category: Mathematics

Page: 636

View: 7380

DOWNLOAD NOW »
Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.

Nonoscillation Theory of Functional Differential Equations with Applications

Author: Ravi P. Agarwal,Leonid Berezansky,Elena Braverman,Alexander Domoshnitsky

Publisher: Springer Science & Business Media

ISBN: 1461434556

Category: Mathematics

Page: 520

View: 7601

DOWNLOAD NOW »
This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.​

Applications of Functional Analysis and Operator Theory

Author: V. Hutson,J. Pym,M. Cloud

Publisher: Elsevier

ISBN: 9780080527314

Category: Mathematics

Page: 432

View: 424

DOWNLOAD NOW »
Functional analysis is a powerful tool when applied to mathematical problems arising from physical situations. The present book provides, by careful selection of material, a collection of concepts and techniques essential for the modern practitioner. Emphasis is placed on the solution of equations (including nonlinear and partial differential equations). The assumed background is limited to elementary real variable theory and finite-dimensional vector spaces. Key Features - Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering. - Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results. - Introduces each new topic with a clear, concise explanation. - Includes numerous examples linking fundamental principles with applications. - Solidifies the reader’s understanding with numerous end-of-chapter problems. · Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering. · Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results. · Introduces each new topic with a clear, concise explanation. · Includes numerous examples linking fundamental principles with applications. · Solidifies the reader's understanding with numerous end-of-chapter problems.

Applied Functional Analysis

Applications to Mathematical Physics

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

ISBN: 9780387944425

Category: Mathematics

Page: 481

View: 7756

DOWNLOAD NOW »
The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.

Theory of degrees, with applications to bifurcations and differential equations

Author: Wiesław Krawcewicz,Jianhong Wu

Publisher: Wiley-Interscience

ISBN: N.A

Category: Mathematics

Page: 374

View: 8791

DOWNLOAD NOW »
This book provides an introduction to degree theory and its applications to nonlinear differential equations. It uses an applications-oriented to address functional analysis, general topology and differential equations and offers a unified treatment of the classical Brouwer degree, the recently developed S?1-degree and the Dold-Ulrich degree for equivalent mappings and bifurcation problems. It integrates two seemingly disparate concepts, beginning with review material before shifting to classical theory and advanced application techniques.

Introduction to Partial Differential Equations with Applications

Author: E. C. Zachmanoglou,Dale W. Thoe

Publisher: Courier Corporation

ISBN: 048613217X

Category: Mathematics

Page: 432

View: 6479

DOWNLOAD NOW »
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Differential Equations and Applications

Author: Yeol Je Cho

Publisher: Nova Publishers

ISBN: 9781590338599

Category: Mathematics

Page: 144

View: 9730

DOWNLOAD NOW »
The aim of this volume is to introduce new topics on the areas of difference, differential, integrodifferential and integral equations, evolution equations, control and optimisation theory, dynamic system theory, queuing theory and electromagnetism and their applications.

Elliptic Functional Differential Equations and Applications

Author: Alexander L. Skubachevskii

Publisher: Springer Science & Business Media

ISBN: 9783764354046

Category: Mathematics

Page: 293

View: 7407

DOWNLOAD NOW »
The purpose of this volume is to present general results concerning solvability and spectrum of boundary value problems within elliptic differential-difference equations.

Differential Calculus and Its Applications

Author: Michael J. Field

Publisher: Courier Corporation

ISBN: 048649795X

Category: Mathematics

Page: 315

View: 8580

DOWNLOAD NOW »
This text offers a synthesis of theory and application related to modern techniques of differentiation. Based on undergraduate courses in advanced calculus, the treatment covers a wide range of topics, from soft functional analysis and finite-dimensional linear algebra to differential equations on submanifolds of Euclidean space. Suitable for advanced undergraduate courses in pure and applied mathematics, it forms the basis for graduate-level courses in advanced calculus and differential manifolds. Starting with a brief resume of prerequisites, including elementary linear algebra and point set topology, the self-contained approach examines liner algebra and normed vector spaces, differentiation and calculus on vector spaces, and the inverse- and implicit-function theorems. A final chapter is dedicated to a consolidation of the theory as stated in previous chapters, in addition to an introduction to differential manifolds and differential equations.

Stability of Linear Delay Differential Equations

A Numerical Approach with MATLAB

Author: Dimitri Breda,Stefano Maset,Rossana Vermiglio

Publisher: Springer

ISBN: 149392107X

Category: Science

Page: 158

View: 3976

DOWNLOAD NOW »
This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.

Volterra Integral Equations

An Introduction to Theory and Applications

Author: Hermann Brunner

Publisher: Cambridge University Press

ISBN: 1107098726

Category: Mathematics

Page: 410

View: 9013

DOWNLOAD NOW »
This book offers a comprehensive introduction to the theory of linear and nonlinear Volterra integral equations. It includes applications and an extensive bibliography.

Differential Equations and Their Applications

An Introduction to Applied Mathematics

Author: Martin Braun

Publisher: Springer Science & Business Media

ISBN: 9780387978949

Category: Mathematics

Page: 578

View: 6113

DOWNLOAD NOW »
Used in undergraduate classrooms across the USA, this is a clearly written, rigorous introduction to differential equations and their applications. Fully understandable to students who have had one year of calculus, this book distinguishes itself from other differential equations texts through its engaging application of the subject matter to interesting scenarios. This fourth edition incorporates earlier introductory material on bifurcation theory and adds a new chapter on Sturm-Liouville boundary value problems. Computer programs in C, Pascal, and Fortran are presented throughout the text to show readers how to apply differential equations towards quantitative problems.

Applications of Lie Groups to Differential Equations

Author: Peter J. Olver

Publisher: Springer Science & Business Media

ISBN: 9780387950006

Category: Language Arts & Disciplines

Page: 513

View: 3358

DOWNLOAD NOW »
This is a solid introduction to applications of Lie groups to differential equations which have proved to be useful in practice. Following an exposition of the applications, the book develops the underlying theory, with many of the topics presented in a novel way, emphasizing explicit examples and computations. Further examples and new theoretical developments appear in the exercises at the end of each chapter.