Introduction to the Theory and Applications of Functional Differential Equations

Author: V. Kolmanovskii,A. Myshkis

Publisher: Springer Science & Business Media

ISBN: 9401719659

Category: Mathematics

Page: 648

View: 5327

DOWNLOAD NOW »
This book covers the most important issues in the theory of functional differential equations and their applications for both deterministic and stochastic cases. Among the subjects treated are qualitative theory, stability, periodic solutions, optimal control and estimation, the theory of linear equations, and basic principles of mathematical modelling. The work, which treats many concrete problems in detail, gives a good overview of the entire field and will serve as a stimulating guide to further research. Audience: This volume will be of interest to researchers and (post)graduate students working in analysis, and in functional analysis in particular. It will also appeal to mathematical engineers, industrial mathematicians, mathematical system theoreticians and mathematical modellers.

Introduction to the Theory and Application of Differential Equations with Deviating Arguments

Author: L.E. El'sgol'ts,S.B. Norkin

Publisher: Academic Press

ISBN: 0080956149

Category: Computers

Page: 356

View: 8115

DOWNLOAD NOW »
Introduction to the Theory and Application of Differential Equations with Deviating Arguments 2nd edition is a revised and substantially expanded edition of the well-known book of L. E. El’sgol’ts published under this same title by Nauka in 1964. Extensions of the theory of differential equations with deviating argument as well as the stimuli of developments within various fields of science and technology contribute to the need for a new edition. This theory in recent years has attracted the attention of vast numbers of researchers, interested both in the theory and its applications. The development of the foundations of the theory of differential equations with a deviating argument is still far from complete. This situation, of course, leaves its mark on our suggestions to the reader of the book and prevents as orderly and systematic a presentation as is usual for mathematical literature. However, it is hoped that in spite of these deficiencies the book will prove useful as a first acquaintanceship with the theory of differential equations with a deviating argument.

Applied Theory of Functional Differential Equations

Author: V. Kolmanovskii,A. Myshkis

Publisher: Springer Science & Business Media

ISBN: 9401580847

Category: Mathematics

Page: 234

View: 6318

DOWNLOAD NOW »
This volume provides an introduction to the properties of functional differential equations and their applications in diverse fields such as immunology, nuclear power generation, heat transfer, signal processing, medicine and economics. In particular, it deals with problems and methods relating to systems having a memory (hereditary systems). The book contains eight chapters. Chapter 1 explains where functional differential equations come from and what sort of problems arise in applications. Chapter 2 gives a broad introduction to the basic principle involved and deals with systems having discrete and distributed delay. Chapters 3-5 are devoted to stability problems for retarded, neutral and stochastic functional differential equations. Problems of optimal control and estimation are considered in Chapters 6-8. For applied mathematicians, engineers, and physicists whose work involves mathematical modeling of hereditary systems. This volume can also be recommended as a supplementary text for graduate students who wish to become better acquainted with the properties and applications of functional differential equations.

Functional Differential Equations

Advances and Applications

Author: Constantin Corduneanu,Yizeng Li,Mehran Mahdavi

Publisher: John Wiley & Sons

ISBN: 1119189470

Category: Mathematics

Page: 368

View: 9837

DOWNLOAD NOW »
Features new results and up-to-date advances in modeling and solving differential equations Introducing the various classes of functional differential equations, Functional Differential Equations: Advances and Applications presents the needed tools and topics to study the various classes of functional differential equations and is primarily concerned with the existence, uniqueness, and estimates of solutions to specific problems. The book focuses on the general theory of functional differential equations, provides the requisite mathematical background, and details the qualitative behavior of solutions to functional differential equations. The book addresses problems of stability, particularly for ordinary differential equations in which the theory can provide models for other classes of functional differential equations, and the stability of solutions is useful for the application of results within various fields of science, engineering, and economics. Functional Differential Equations: Advances and Applications also features: • Discussions on the classes of equations that cannot be solved to the highest order derivative, and in turn, addresses existence results and behavior types • Oscillatory motion and solutions that occur in many real-world phenomena as well as in man-made machines • Numerous examples and applications with a specific focus on ordinary differential equations and functional differential equations with finite delay • An appendix that introduces generalized Fourier series and Fourier analysis after periodicity and almost periodicity • An extensive Bibliography with over 550 references that connects the presented concepts to further topical exploration Functional Differential Equations: Advances and Applications is an ideal reference for academics and practitioners in applied mathematics, engineering, economics, and physics. The book is also an appropriate textbook for graduate- and PhD-level courses in applied mathematics, differential and difference equations, differential analysis, and dynamics processes. CONSTANTIN CORDUNEANU, PhD, is Emeritus Professor in the Department of Mathematics at The University of Texas at Arlington, USA. The author of six books and over 200 journal articles, he is currently Associate Editor for seven journals; a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Romanian Academy; and past president of the American Romanian Academy of Arts and Sciences. YIZENG LI, PhD, is Professor in the Department of Mathematics at Tarrant County College, USA. He is a member of the Society for Industrial and Applied Mathematics. MEHRAN MAHDAVI, PhD, is Professor in the Department of Mathematics at Bowie State University, USA. The author of numerous journal articles, he is a member of the American Mathematical Society, Society for Industrial and Applied Mathematics, and the Mathematical Association of America.

Theory and Applications of Partial Functional Differential Equations

Author: Jianhong Wu

Publisher: Springer Science & Business Media

ISBN: 1461240506

Category: Mathematics

Page: 432

View: 2540

DOWNLOAD NOW »
Abstract semilinear functional differential equations arise from many biological, chemical, and physical systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns. The aim of this book is to provide an introduction of the qualitative theory and applications of these equations from the dynamical systems point of view. The required prerequisites for that book are at a level of a graduate student. The style of presentation will be appealing to people trained and interested in qualitative theory of ordinary and functional differential equations.

Ordinary Differential Equations with Applications

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 9780387985350

Category: Mathematics

Page: 561

View: 4846

DOWNLOAD NOW »
This graduate-level textbook offers students a rapid introduction to the language of ordinary differential equations followed by a careful treatment of the central topics of the qualitative theory. In addition, special attention is given to the origins and applications of differential equations in physical science and engineering.

Nonlinear Functional Analysis and Its Applications

II/ A: Linear Monotone Operators

Author: E. Zeidler

Publisher: Springer Science & Business Media

ISBN: 9780387968025

Category: Mathematics

Page: 467

View: 3943

DOWNLOAD NOW »
This is the second of a five-volume exposition of the main principles of nonlinear functional analysis and its applications to the natural sciences, economics, and numerical analysis. The presentation is self -contained and accessible to the nonspecialist. Part II concerns the theory of monotone operators. It is divided into two subvolumes, II/A and II/B, which form a unit. The present Part II/A is devoted to linear monotone operators. It serves as an elementary introduction to the modern functional analytic treatment of variational problems, integral equations, and partial differential equations of elliptic, parabolic and hyperbolic type. This book also represents an introduction to numerical functional analysis with applications to the Ritz method along with the method of finite elements, the Galerkin methods, and the difference method. Many exercises complement the text. The theory of monotone operators is closely related to Hilbert's rigorous justification of the Dirichlet principle, and to the 19th and 20th problems of Hilbert which he formulated in his famous Paris lecture in 1900, and which strongly influenced the development of analysis in the twentieth century.

Applications of Functional Analysis and Operator Theory

Author: V. Hutson,J. Pym,M. Cloud

Publisher: Elsevier

ISBN: 9780080527314

Category: Mathematics

Page: 432

View: 3960

DOWNLOAD NOW »
Functional analysis is a powerful tool when applied to mathematical problems arising from physical situations. The present book provides, by careful selection of material, a collection of concepts and techniques essential for the modern practitioner. Emphasis is placed on the solution of equations (including nonlinear and partial differential equations). The assumed background is limited to elementary real variable theory and finite-dimensional vector spaces. Key Features - Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering. - Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results. - Introduces each new topic with a clear, concise explanation. - Includes numerous examples linking fundamental principles with applications. - Solidifies the reader’s understanding with numerous end-of-chapter problems. · Provides an ideal transition between introductory math courses and advanced graduate study in applied mathematics, the physical sciences, or engineering. · Gives the reader a keen understanding of applied functional analysis, building progressively from simple background material to the deepest and most significant results. · Introduces each new topic with a clear, concise explanation. · Includes numerous examples linking fundamental principles with applications. · Solidifies the reader's understanding with numerous end-of-chapter problems.

Nonoscillation Theory of Functional Differential Equations with Applications

Author: Ravi P. Agarwal,Leonid Berezansky,Elena Braverman,Alexander Domoshnitsky

Publisher: Springer Science & Business Media

ISBN: 1461434556

Category: Mathematics

Page: 520

View: 9516

DOWNLOAD NOW »
This monograph explores nonoscillation and existence of positive solutions for functional differential equations and describes their applications to maximum principles, boundary value problems and stability of these equations. In view of this objective the volume considers a wide class of equations including, scalar equations and systems of different types, equations with variable types of delays and equations with variable deviations of the argument. Each chapter includes an introduction and preliminaries, thus making it complete. Appendices at the end of the book cover reference material. Nonoscillation Theory of Functional Differential Equations with Applications is addressed to a wide audience of researchers in mathematics and practitioners.​

Elliptic Functional Differential Equations and Applications

Author: Alexander L. Skubachevskii

Publisher: Springer Science & Business Media

ISBN: 9783764354046

Category: Mathematics

Page: 293

View: 4924

DOWNLOAD NOW »
The purpose of this volume is to present general results concerning solvability and spectrum of boundary value problems within elliptic differential-difference equations.

Stability of Linear Delay Differential Equations

A Numerical Approach with MATLAB

Author: Dimitri Breda,Stefano Maset,Rossana Vermiglio

Publisher: Springer

ISBN: 149392107X

Category: Science

Page: 158

View: 5723

DOWNLOAD NOW »
This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.

Stochastic Differential Equations

An Introduction with Applications

Author: Bernt Oksendal

Publisher: Springer Science & Business Media

ISBN: 3662025744

Category: Mathematics

Page: 188

View: 9289

DOWNLOAD NOW »
From the reviews: "The author, a lucid mind with a fine pedagogical instinct, has written a splendid text. He starts out by stating six problems in the introduction in which stochastic differential equations play an essential role in the solution. Then, while developing stochastic calculus, he frequently returns to these problems and variants thereof and to many other problems to show how the theory works and to motivate the next step in the theoretical development. Needless to say, he restricts himself to stochastic integration with respect to Brownian motion. He is not hesitant to give some basic results without proof in order to leave room for "some more basic applications... The book can be an ideal text for a graduate course, but it is also recommended to analysts (in particular, those working in differential equations and deterministic dynamical systems and control) who wish to learn quickly what stochastic differential equations are all about." Acta Scientiarum Mathematicarum, Tom 50, 3-4, 1986#1 "The book is well written, gives a lot of nice applications of stochastic differential equation theory, and presents theory and applications of stochastic differential equations in a way which makes the book useful for mathematical seminars at a low level. (...) The book (will) really motivate scientists from non-mathematical fields to try to understand the usefulness of stochastic differential equations in their fields." Metrica#2

Functional Analysis and its Applications

Proceedings of the International Conference on Functional Analysis and its Applications dedicated to the 110th Anniversary of Stefan Banach, May 28-31, 2002, Lviv, Ukraine

Author: Vladimir Kadets,Wieslaw Tadeusz Zelazko

Publisher: Elsevier

ISBN: 9780080472805

Category: Mathematics

Page: 342

View: 3456

DOWNLOAD NOW »
The conference took place in Lviv, Ukraine and was dedicated to a famous Polish mathematician Stefan Banach ƒ{ the most outstanding representative of the Lviv mathematical school. Banach spaces, introduced by Stefan Banach at the beginning of twentieth century, are familiar now to every mathematician. The book contains a short historical article and scientific contributions of the conference participants, mostly in the areas of functional analysis, general topology, operator theory and related topics.

Differential Calculus and Its Applications

Author: Michael J. Field

Publisher: Courier Corporation

ISBN: 048649795X

Category: Mathematics

Page: 315

View: 2724

DOWNLOAD NOW »
This text offers a synthesis of theory and application related to modern techniques of differentiation. Based on undergraduate courses in advanced calculus, the treatment covers a wide range of topics, from soft functional analysis and finite-dimensional linear algebra to differential equations on submanifolds of Euclidean space. Suitable for advanced undergraduate courses in pure and applied mathematics, it forms the basis for graduate-level courses in advanced calculus and differential manifolds. Starting with a brief resume of prerequisites, including elementary linear algebra and point set topology, the self-contained approach examines liner algebra and normed vector spaces, differentiation and calculus on vector spaces, and the inverse- and implicit-function theorems. A final chapter is dedicated to a consolidation of the theory as stated in previous chapters, in addition to an introduction to differential manifolds and differential equations.

Introduction to Partial Differential Equations with Applications

Author: E. C. Zachmanoglou,Dale W. Thoe

Publisher: Courier Corporation

ISBN: 048613217X

Category: Mathematics

Page: 432

View: 4694

DOWNLOAD NOW »
This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Applied Functional Analysis

Applications to Mathematical Physics

Author: Eberhard Zeidler

Publisher: Springer Science & Business Media

ISBN: 9780387944425

Category: Mathematics

Page: 481

View: 1250

DOWNLOAD NOW »
The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.

An Introduction to Delay Differential Equations with Applications to the Life Sciences

Author: hal smith

Publisher: Springer Science & Business Media

ISBN: 9781441976468

Category: Mathematics

Page: 172

View: 4770

DOWNLOAD NOW »
This book is intended to be an introduction to Delay Differential Equations for upper level undergraduates or beginning graduate mathematics students who have a reasonable background in ordinary differential equations and who would like to get to the applications quickly. The author has used preliminary notes in teaching such a course at Arizona State University over the past two years. This book focuses on the key tools necessary to understand the applications literature involving delay equations and to construct and analyze mathematical models involving delay differential equations. The book begins with a survey of mathematical models involving delay equations.

Introduction to the Calculus of Variations and Control with Modern Applications

Author: John A. Burns

Publisher: CRC Press

ISBN: 146657139X

Category: Mathematics

Page: 562

View: 8222

DOWNLOAD NOW »
Introduction to the Calculus of Variations and Control with Modern Applications provides the fundamental background required to develop rigorous necessary conditions that are the starting points for theoretical and numerical approaches to modern variational calculus and control problems. The book also presents some classical sufficient conditions and discusses the importance of distinguishing between the necessary and sufficient conditions. In the first part of the text, the author develops the calculus of variations and provides complete proofs of the main results. He explains how the ideas behind the proofs are essential to the development of modern optimization and control theory. Focusing on optimal control problems, the second part shows how optimal control is a natural extension of the classical calculus of variations to more complex problems. By emphasizing the basic ideas and their mathematical development, this book gives you the foundation to use these mathematical tools to then tackle new problems. The text moves from simple to more complex problems, allowing you to see how the fundamental theory can be modified to address more difficult and advanced challenges. This approach helps you understand how to deal with future problems and applications in a realistic work environment.