Introductory Non-Euclidean Geometry

Author: Henry Parker Manning

Publisher: Courier Corporation

ISBN: 0486154645

Category: Mathematics

Page: 112

View: 3184

DOWNLOAD NOW »
This fine and versatile introduction begins with the theorems common to Euclidean and non-Euclidean geometry, and then it addresses the specific differences that constitute elliptic and hyperbolic geometry. 1901 edition.

Introduction to Non-Euclidean Geometry

Author: EISENREICH

Publisher: Elsevier

ISBN: 1483295311

Category: Mathematics

Page: 274

View: 6511

DOWNLOAD NOW »
An Introduction to Non-Euclidean Geometry covers some introductory topics related to non-Euclidian geometry, including hyperbolic and elliptic geometries. This book is organized into three parts encompassing eight chapters. The first part provides mathematical proofs of Euclid’s fifth postulate concerning the extent of a straight line and the theory of parallels. The second part describes some problems in hyperbolic geometry, such as cases of parallels with and without a common perpendicular. This part also deals with horocycles and triangle relations. The third part examines single and double elliptic geometries. This book will be of great value to mathematics, liberal arts, and philosophy major students.

Introduction to Non-Euclidean Geometry

Author: Harold E. Wolfe

Publisher: Courier Corporation

ISBN: 0486320375

Category: Mathematics

Page: 272

View: 5215

DOWNLOAD NOW »
College-level text for elementary courses covers the fifth postulate, hyperbolic plane geometry and trigonometry, and elliptic plane geometry and trigonometry. Appendixes offer background on Euclidean geometry. Numerous exercises. 1945 edition.

Introduction to Hyperbolic Geometry

Author: Arlan Ramsay,Robert D. Richtmyer

Publisher: Springer Science & Business Media

ISBN: 1475755856

Category: Mathematics

Page: 289

View: 369

DOWNLOAD NOW »
This book is an introduction to hyperbolic and differential geometry that provides material in the early chapters that can serve as a textbook for a standard upper division course on hyperbolic geometry. For that material, the students need to be familiar with calculus and linear algebra and willing to accept one advanced theorem from analysis without proof. The book goes well beyond the standard course in later chapters, and there is enough material for an honors course, or for supplementary reading. Indeed, parts of the book have been used for both kinds of courses. Even some of what is in the early chapters would surely not be nec essary for a standard course. For example, detailed proofs are given of the Jordan Curve Theorem for Polygons and of the decomposability of poly gons into triangles, These proofs are included for the sake of completeness, but the results themselves are so believable that most students should skip the proofs on a first reading. The axioms used are modern in character and more "user friendly" than the traditional ones. The familiar real number system is used as an in gredient rather than appearing as a result of the axioms. However, it should not be thought that the geometric treatment is in terms of models: this is an axiomatic approach that is just more convenient than the traditional ones.

Non-Euclidean Geometry

Author: Stefan Kulczycki

Publisher: Courier Corporation

ISBN: 0486155013

Category: Mathematics

Page: 208

View: 8962

DOWNLOAD NOW »
This accessible approach features stereometric and planimetric proofs, and elementary proofs employing only the simplest properties of the plane. A short history of geometry precedes the systematic exposition. 1961 edition.

Non-Euclidean geometry

Author: Harold Scott Macdonald Coxeter

Publisher: Univ of Toronto Pr

ISBN: N.A

Category: Mathematics

Page: 281

View: 9983

DOWNLOAD NOW »
A text which surveys real projective geometry, the elliptic metric, and supplies applicable definitions and theorems

Non-Euclidean Geometry in the Theory of Automorphic Functions

Author: Jacques Hadamard

Publisher: American Mathematical Soc.

ISBN: 9780821890479

Category: Mathematics

Page: 95

View: 8685

DOWNLOAD NOW »
This is the English translation of a volume originally published only in Russian and now out of print. The book was written by Jacques Hadamard on the work of Poincare. Poincare's creation of a theory of automorphic functions in the early 1880s was one of the most significant mathematical achievements of the nineteenth century. It directly inspired the uniformization theorem, led to a class of functions adequate to solve all linear ordinary differential equations, and focused attention on a large new class of discrete groups. It was the first significant application of non-Euclidean geometry. This unique exposition by Hadamard offers a fascinating and intuitive introduction to the subject of automorphic functions and illuminates its connection to differential equations, a connection not often found in other texts.

Geometry Illuminated

An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry

Author: Matthew Harvey

Publisher: The Mathematical Association of America

ISBN: 1939512115

Category: Mathematics

Page: 560

View: 2996

DOWNLOAD NOW »
Geometry Illuminated is an introduction to geometry in the plane, both Euclidean and hyperbolic. It is designed to be used in an undergraduate course on geometry, and as such, its target audience is undergraduate math majors. However, much of it should be readable by anyone who is comfortable with the language of mathematical proof. Throughout, the goal is to develop the material patiently. One of the more appealing aspects of geometry is that it is a very "visual" subject. This book hopes to takes full advantage of that, with an extensive use of illustrations as guides. Geometry Illuminated is divided into four principal parts. Part 1 develops neutral geometry in the style of Hilbert, including a discussion of the construction of measure in that system, ultimately building up to the Saccheri-Legendre Theorem. Part 2 provides a glimpse of classical Euclidean geometry, with an emphasis on concurrence results, such as the nine-point circle. Part 3 studies transformations of the Euclidean plane, beginning with isometries and ending with inversion, with applications and a discussion of area in between. Part 4 is dedicated to the development of the Poincaré disk model, and the study of geometry within that model. While this material is traditional, Geometry Illuminated does bring together topics that are generally not found in a book at this level. Most notably, it explicitly computes parametric equations for the pseudosphere and its geodesics. It focuses less on the nature of axiomatic systems for geometry, but emphasizes rather the logical development of geometry within such a system. It also includes sections dealing with trilinear and barycentric coordinates, theorems that can be proved using inversion, and Euclidean and hyperbolic tilings.

Geometry with an Introduction to Cosmic Topology

Author: Michael P. Hitchman

Publisher: Jones & Bartlett Learning

ISBN: 0763754579

Category: Mathematics

Page: 238

View: 1505

DOWNLOAD NOW »
The content of Geometry with an Introduction to Cosmic Topology is motivated by questions that have ignited the imagination of stargazers since antiquity. What is the shape of the universe? Does the universe have and edge? Is it infinitely big? Dr. Hitchman aims to clarify this fascinating area of mathematics. This non-Euclidean geometry text is organized intothree natural parts. Chapter 1 provides an overview including a brief history of Geometry, Surfaces, and reasons to study Non-Euclidean Geometry. Chapters 2-7 contain the core mathematical content of the text, following the ErlangenProgram, which develops geometry in terms of a space and a group of transformations on that space. Finally chapters 1 and 8 introduce (chapter 1) and explore (chapter 8) the topic of cosmic topology through the geometry learned in the preceding chapters.

Non-Euclidean Geometry and Curvature: Two-Dimensional Spaces, Volume 3

Author: James W. Cannon

Publisher: American Mathematical Soc.

ISBN: 1470437163

Category: Geometry

Page: 105

View: 5540

DOWNLOAD NOW »
This is the final volume of a three volume collection devoted to the geometry, topology, and curvature of 2-dimensional spaces. The collection provides a guided tour through a wide range of topics by one of the twentieth century's masters of geometric topology. The books are accessible to college and graduate students and provide perspective and insight to mathematicians at all levels who are interested in geometry and topology. Einstein showed how to interpret gravity as the dynamic response to the curvature of space-time. Bill Thurston showed us that non-Euclidean geometries and curvature are essential to the understanding of low-dimensional spaces. This third and final volume aims to give the reader a firm intuitive understanding of these concepts in dimension 2. The volume first demonstrates a number of the most important properties of non-Euclidean geometry by means of simple infinite graphs that approximate that geometry. This is followed by a long chapter taken from lectures the author gave at MSRI, which explains a more classical view of hyperbolic non-Euclidean geometry in all dimensions. Finally, the author explains a natural intrinsic obstruction to flattening a triangulated polyhedral surface into the plane without distorting the constituent triangles. That obstruction extends intrinsically to smooth surfaces by approximation and is called curvature. Gauss's original definition of curvature is extrinsic rather than intrinsic. The final two chapters show that the book's intrinsic definition is equivalent to Gauss's extrinsic definition (Gauss's “Theorema Egregium” (“Great Theorem”)).

Euclidean and Non-Euclidean Geometries

Development and History

Author: Marvin J. Greenberg

Publisher: Macmillan Higher Education

ISBN: 1429281332

Category: Mathematics

Page: 512

View: 3095

DOWNLOAD NOW »
This is the definitive presentation of the history, development and philosophical significance of non-Euclidean geometry as well as of the rigorous foundations for it and for elementary Euclidean geometry, essentially according to Hilbert. Appropriate for liberal arts students, prospective high school teachers, math. majors, and even bright high school students. The first eight chapters are mostly accessible to any educated reader; the last two chapters and the two appendices contain more advanced material, such as the classification of motions, hyperbolic trigonometry, hyperbolic constructions, classification of Hilbert planes and an introduction to Riemannian geometry.

Crocheting Adventures with Hyperbolic Planes

Tactile Mathematics, Art and Craft for all to Explore, Second Edition

Author: Daina Taimina

Publisher: CRC Press

ISBN: 1351402196

Category: Mathematics

Page: 200

View: 2584

DOWNLOAD NOW »
Winner, Euler Book Prize, awarded by the Mathematical Association of America. With over 200 full color photographs, this non-traditional, tactile introduction to non-Euclidean geometries also covers early development of geometry and connections between geometry, art, nature, and sciences. For the crafter or would-be crafter, there are detailed instructions for how to crochet various geometric models and how to use them in explorations. New to the 2nd Edition; Daina Taimina discusses her own adventures with the hyperbolic planes as well as the experiences of some of her readers. Includes recent applications of hyperbolic geometry such as medicine, architecture, fashion & quantum computing.

Introduction to Projective Geometry

Author: C. R. Wylie

Publisher: Courier Corporation

ISBN: 0486141705

Category: Mathematics

Page: 576

View: 9620

DOWNLOAD NOW »
This introductory volume offers strong reinforcement for its teachings, with detailed examples and numerous theorems, proofs, and exercises, plus complete answers to all odd-numbered end-of-chapter problems. 1970 edition.