Introductory Real Analysis

Author: A. N. Kolmogorov,S. V. Fomin

Publisher: Courier Corporation

ISBN: 0486134741

Category: Mathematics

Page: 416

View: 2535

DOWNLOAD NOW »
Comprehensive, elementary introduction to real and functional analysis covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, more. 1970 edition.

Differentialgleichungen für Dummies

Author: Steven Holzner

Publisher: John Wiley & Sons

ISBN: 3527658041

Category: Mathematics

Page: 327

View: 2106

DOWNLOAD NOW »
Als die Gute Fee H?nschen fragte: "was w?nschst Du dir?", antwortete er: "Keine Differentialgleichungen mehr in der Schule": Hans im Gl?ck! Jetzt k?nnen Sie auch auf eine Gute Fee warten, oder sich dieses Buch kaufen. Sie finden hier Hilfe sollten Sie mit linearen und nichtlinearen gew?hnlichen Differentialgleichungen ihre liebe M?he haben, seien sie nun erster, zweiter oder h?herer Ordnung. Sie lernen auch, was Sie zu Laplace Transformation, Potenzreihen und vielen anderen vertrackten Problemen wissen sollten. Sehen Sie der Realit?t ins Auge, mit diesem Buch.

Analysis 2

Differentialrechnung im Rn, gewöhnliche Differentialgleichungen

Author: Otto Forster

Publisher: Springer-Verlag

ISBN: 3322919080

Category: Mathematics

Page: 164

View: 5870

DOWNLOAD NOW »
Der vorliegende Band stellt den zweiten Teil eines Analysis-Kurses für Studierende der Mathematik und Physik dar. Das erste Kapitel über Differentialrechnung im R^n behandelt nach einer Einführung in die topologischen Grundbegriffe Kurven im R^n, partielle Ableitungen, totale Differenzierbarkeit, Taylorsche Formel, Maxima und Minima von Funktionen mehrerer Veränderlichen, implizite Funktionen und parameterabhängige Integrale. Das zweite Kapitel gibt eine kurze Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Nach dem Beweis des allgemeinen Existenz- und Eindeutigkeitssatzes und der Besprechung der Methode der Trennung der Variablen wird besonders auf die Theorie der linearen Differentialgleichungen eingegangen.

Lehrbuch der Analysis

Author: Harro Heuser

Publisher: Springer-Verlag

ISBN: 3663013715

Category: Mathematics

Page: 643

View: 7308

DOWNLOAD NOW »
Dieses Buch ist der erste Teil eines zweibändigen Werkes über Analysis. Es ist aus Vorlesungen, Übungen und Seminaren erwachsen, die ich mehrfach an den Universitäten Mainz und Karlsruhe gehalten habe, und so angelegt, daß es auch zum Selbststudium dienen kann. Ich widerstehe der Versuchung, dem Studenten, der jetzt dieses Vorwort liest, ausführlich die Themen zu beschreiben, die ihn erwarten; denn dazu müßte ich Worte gebrauchen, die er doch erst nach der Lektüre des Buches verstehen kann - nach der Lektüre aber sollte er selbst wissen, was gespielt worden ist. Den Kenner hingegen wird ein Blick auf das Inhaltsverzeichnis und ein rasches Durchblättern ausreichend orientieren. Dennoch halte ich es für möglich, anknüpfend an Schulkenntnisse und Alltagser fahrung auch dem Anfänger verständlich zu machen, was der rote Faden ist, der dieses Buch durchzieht und in welchem Geist es geschrieben wurde und gelesen werden möchte. Der rote Faden, das ständig aufklingende Leitmotiv und energisch vorwärts treibende Hauptproblem ist die Frage, wie man das Änderungsverhalten einer Funktion verstehen, beschreiben und beherrschen kann, schärfer: Welche Be griffe eignen sich am besten dazu, die Änderung einer Funktion "im Kleinen" (also bei geringen Änderungen ihrer unabhängigen Variablen) zu erfassen, was kann man über die Funktion "im Großen", über ihren Gesamtverlauf sagen, wenn man Kenntnisse über ihr Verhalten "im Kleinen" hat, geben uns diese Kenntnisse vielleicht sogar die Funktion gänzlich in die Hand odq besser: Wie tief müssen diese "lokalen Kenntnisse" gehen, um uns die Funktion "global"

Analysis 1

Author: V. A. Zorich

Publisher: Springer-Verlag

ISBN: 3540332782

Category: Mathematics

Page: 598

View: 6161

DOWNLOAD NOW »
Ausführlicher Einblick in die Anfänge der Analysis: von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Ausgerichtet auf naturwissenschaftliche Fragestellungen und in detaillierter Herangehensweise an die Integral- und Differentialrechnung. Mit einer Fülle hilfreicher Beispiele, Aufgaben und Anwendungen. In Band 1: vollständige Übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variablen.

Analysis I

Author: Herbert Amann,Joachim Escher

Publisher: Springer-Verlag

ISBN: 3034877943

Category: Mathematics

Page: 445

View: 6348

DOWNLOAD NOW »
Dieses Lehrbuch ist der erste Band einer dreiteiligen Einführung in die Analysis. Es ist durch einen modernen und klaren Aufbau geprägt, der versucht den Blick auf das Wesentliche zu richten. Anders als in den üblichen Lehrbüchern wird keine künstliche Trennung zwischen der Theorie einer Variablen und derjenigen mehrerer Veränderlicher vorgenommen. Der Leser soll in dem Erkennen der wesentlichen Inhalte und Ideen der Analysis geschult werden und sich ein solides Fundament für das Studium tieferliegender Theorien erwerben. Das Werk richtet sich an Hörer und Dozenten der Anfängervorlesung der Analysis. Durch zahlreiche Beispiele, Übungsaufgaben und Ergänzungen zum üblichen Vorlesungsstoff ist der Text ausserdem zum Selbststudium, als Vorlage für vertiefende Seminare und als Grundlage für das gesamte Mathematik- bzw. Physikstudium geeignet.

Analysis I

Author: Christiane Tretter

Publisher: Springer-Verlag

ISBN: 3034803494

Category: Mathematics

Page: 157

View: 6236

DOWNLOAD NOW »
Das Lehrbuch ist der erste von zwei einführenden Bänden in die Analysis. Es zeichnet sich dadurch aus, dass alle klassischen Themen der Analysis des ersten Semesters kompakt zusammengefasst sind und dennoch auf typische Anfängerprobleme eingegangen wird. Neben einer Einführung in die formale Sprache und die wichtigsten Beweistechniken der Mathematik bietet der Band eingängige Erläuterungen zu abstrakten Begriffen. Alle prüfungsrelevanten Inhalte sind abgedeckt und können anhand von Beispielen, Gegenbeispielen und Aufgaben nachvollzogen werden.

Lineare Algebra

Author: Gilbert Strang

Publisher: Springer-Verlag

ISBN: 3642556310

Category: Mathematics

Page: 656

View: 2289

DOWNLOAD NOW »
Diese Einführung in die lineare Algebra bietet einen sehr anschaulichen Zugang zum Thema. Die englische Originalausgabe wurde rasch zum Standardwerk in den Anfängerkursen des Massachusetts Institute of Technology sowie in vielen anderen nordamerikanischen Universitäten. Auch hierzulande ist dieses Buch als Grundstudiumsvorlesung für alle Studenten hervorragend lesbar. Darüber hinaus gibt es neue Impulse in der Mathematikausbildung und folgt dem Trend hin zu Anwendungen und Interdisziplinarität. Inhaltlich umfasst das Werk die Grundkenntnisse und die wichtigsten Anwendungen der linearen Algebra und eignet sich hervorragend für Studierende der Ingenieurwissenschaften, Naturwissenschaften, Mathematik und Informatik, die einen modernen Zugang zum Einsatz der linearen Algebra suchen. Ganz klar liegt hierbei der Schwerpunkt auf den Anwendungen, ohne dabei die mathematische Strenge zu vernachlässigen. Im Buch wird die jeweils zugrundeliegende Theorie mit zahlreichen Beispielen aus der Elektrotechnik, der Informatik, der Physik, Biologie und den Wirtschaftswissenschaften direkt verknüpft. Zahlreiche Aufgaben mit Lösungen runden das Werk ab.

Elements of Real Analysis

Author: David A. Sprecher

Publisher: Courier Corporation

ISBN: 0486153258

Category: Mathematics

Page: 368

View: 8460

DOWNLOAD NOW »
Classic text explores intermediate steps between basics of calculus and ultimate stage of mathematics — abstraction and generalization. Covers fundamental concepts, real number system, point sets, functions of a real variable, Fourier series, more. Over 500 exercises.

Introductory Complex Analysis

Author: Richard A. Silverman

Publisher: Courier Corporation

ISBN: 0486318524

Category: Mathematics

Page: 400

View: 4795

DOWNLOAD NOW »
Shorter version of Markushevich's Theory of Functions of a Complex Variable, appropriate for advanced undergraduate and graduate courses in complex analysis. More than 300 problems, some with hints and answers. 1967 edition.

Introduction to Analysis

Author: Maxwell Rosenlicht

Publisher: Courier Corporation

ISBN: 0486134687

Category: Mathematics

Page: 272

View: 5166

DOWNLOAD NOW »
Written for junior and senior undergraduates, this remarkably clear and accessible treatment covers set theory, the real number system, metric spaces, continuous functions, Riemann integration, multiple integrals, and more. 1968 edition.

Real Analysis

Author: Norman B. Haaser,Joseph Arthur Sullivan

Publisher: Courier Dover Publications

ISBN: 9780486665092

Category: Mathematics

Page: 341

View: 7427

DOWNLOAD NOW »
Clear, accessible text for 1st course in abstract analysis. Explores sets and relations, real number system and linear spaces, normed spaces, Lebesgue integral, approximation theory, Banach fixed-point theorem, Stieltjes integrals, more. Includes numerous problems.

Das BUCH der Beweise

Author: Martin Aigner,Günter M. Ziegler

Publisher: Springer-Verlag

ISBN: 3662577674

Category: Mathematics

Page: 360

View: 8131

DOWNLOAD NOW »
Diese fünfte deutsche Auflage enthält ein ganz neues Kapitel über van der Waerdens Permanenten-Vermutung, sowie weitere neue, originelle und elegante Beweise in anderen Kapiteln. Aus den Rezensionen: “... es ist fast unmöglich, ein Mathematikbuch zu schreiben, das von jedermann gelesen und genossen werden kann, aber Aigner und Ziegler gelingt diese Meisterleistung in virtuosem Stil. [...] Dieses Buch erweist der Mathematik einen unschätzbaren Dienst, indem es Nicht-Mathematikern vorführt, was Mathematiker meinen, wenn sie über Schönheit sprechen.” Aus der Laudatio für den “Steele Prize for Mathematical Exposition” 2018 "Was hier vorliegt ist eine Sammlung von Beweisen, die in das von Paul Erdös immer wieder zitierte BUCH gehören, das vom lieben (?) Gott verwahrt wird und das die perfekten Beweise aller mathematischen Sätze enthält. Manchmal lässt der Herrgott auch einige von uns Sterblichen in das BUCH blicken, und die so resultierenden Geistesblitze erhellen den Mathematikeralltag mit eleganten Argumenten, überraschenden Zusammenhängen und unerwarteten Volten." www.mathematik.de, Mai 2002 "Eine einzigartige Sammlung eleganter mathematischer Beweise nach der Idee von Paul Erdös, verständlich geschrieben von exzellenten Mathematikern. Dieses Buch gibt anregende Lösungen mit Aha-Effekt, auch für Nicht-Mathematiker." www.vismath.de "Ein prächtiges, äußerst sorgfältig und liebevoll gestaltetes Buch! Erdös hatte die Idee DES BUCHES, in dem Gott die perfekten Beweise mathematischer Sätze eingeschrieben hat. Das hier gedruckte Buch will eine "very modest approximation" an dieses BUCH sein.... Das Buch von Aigner und Ziegler ist gelungen ..." Mathematische Semesterberichte, November 1999 "Wer (wie ich) bislang vergeblich versucht hat, einen Blick ins BUCH zu werfen, wird begierig in Aigners und Zieglers BUCH der Beweise schmökern." www.mathematik.de, Mai 2002

Mengentheoretische Topologie

Author: Boto von Querenburg

Publisher: Springer-Verlag

ISBN: 3642568602

Category: Education

Page: 353

View: 7598

DOWNLOAD NOW »
Eine verständliche und vollständige Einführung in die Mengentheoretische Topologie, die als Begleittext zu einer Vorlesung, aber auch zum Selbststudium für Studenten ab dem 3. Semester bestens geeignet ist. Zahlreiche Aufgaben ermöglichen ein systematisches Erlernen des Stoffes, wobei Lösungshinweise bzw. Musterlösungen zu ausgewählten Aufgaben bereitgestellt werden. In den ersten 10 Kapiteln werden die wichtigen Begriffe und Ergebnisse der Mengentheoretischen Topologie abgehandelt. Daran schließt sich die Untersuchung uniformer Strukturen in Kapitel 11-12 an. Zur Vertiefung werden Funktionenräume, Vervollständigungen und Kompaktifizierungen in Kapitel 13-15 behandelt. Für die Neuauflage wurden fünf zusätzliche Kapitel über topologische Strukturen in topologischen Gruppen sowie ein Abschnitt über die historischen Entwicklungen der Mengentheoretischen Topologie und der topologischen Gruppen zugefügt.

Differentialgeometrie von Kurven und Flächen

Author: Manfredo P. do Carmo

Publisher: Springer-Verlag

ISBN: 3322850722

Category: Technology & Engineering

Page: 263

View: 1694

DOWNLOAD NOW »
Inhalt: Kurven - Reguläre Flächen - Die Geometrie der Gauß-Abbildung - Die innere Geometrie von Flächen - Anhang

Funktionentheorie

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer-Verlag

ISBN: 3662073501

Category: Mathematics

Page: 477

View: 1903

DOWNLOAD NOW »
Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebraische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± V-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + V-121 + ~2 - V-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z.B. J 1 + V-3 + J 1 - V-3 = v6. Im Jahre 1777 führte L. EULER die Bezeichnung i = yCI für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.