Lectures in Geometric Combinatorics

Author: Rekha R. Thomas

Publisher: American Mathematical Soc.

ISBN: 9780821841402

Category: Mathematics

Page: 143

View: 3259

DOWNLOAD NOW »
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics.The connections rely on Grobner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.

Gröbner Bases

Statistics and Software Systems

Author: Takayuki Hibi

Publisher: Springer Science & Business Media

ISBN: 4431545743

Category: Mathematics

Page: 474

View: 9487

DOWNLOAD NOW »
The idea of the Gröbner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Gröbner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Gröbner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Gröbner basis. Since then, rapid development on the Gröbner basis has been achieved by many researchers, including Bernd Sturmfels. This book serves as a standard bible of the Gröbner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC’s of the Gröbner basis, requiring no special knowledge to understand those basic points. Starting from the introductory performance of the Gröbner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Gröbner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Gröbner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Gröbner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Gröbner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems.

Algebraic Statistics

Author: Seth Sullivant

Publisher: American Mathematical Soc.

ISBN: 1470435179

Category: Geometry, Algebraic

Page: 490

View: 3961

DOWNLOAD NOW »
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.

Graphs for Pattern Recognition

Infeasible Systems of Linear Inequalities

Author: Damir Gainanov

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110481065

Category: Mathematics

Page: 158

View: 3150

DOWNLOAD NOW »
This monograph deals with mathematical constructions that are foundational in such an important area of data mining as pattern recognition. By using combinatorial and graph theoretic techniques, a closer look is taken at infeasible systems of linear inequalities, whose generalized solutions act as building blocks of geometric decision rules for pattern recognition. Infeasible systems of linear inequalities prove to be a key object in pattern recognition problems described in geometric terms thanks to the committee method. Such infeasible systems of inequalities represent an important special subclass of infeasible systems of constraints with a monotonicity property – systems whose multi-indices of feasible subsystems form abstract simplicial complexes (independence systems), which are fundamental objects of combinatorial topology. The methods of data mining and machine learning discussed in this monograph form the foundation of technologies like big data and deep learning, which play a growing role in many areas of human-technology interaction and help to find solutions, better solutions and excellent solutions. Contents: Preface Pattern recognition, infeasible systems of linear inequalities, and graphs Infeasible monotone systems of constraints Complexes, (hyper)graphs, and inequality systems Polytopes, positive bases, and inequality systems Monotone Boolean functions, complexes, graphs, and inequality systems Inequality systems, committees, (hyper)graphs, and alternative covers Bibliography List of notation Index

Algorithmische Geometrie

Polyedrische und algebraische Methoden

Author: Michael Joswig,Thorsten Theobald

Publisher: Springer-Verlag

ISBN: 3834894400

Category: Mathematics

Page: 266

View: 9136

DOWNLOAD NOW »
In dem Lehrbuch wird eine mathematisch orientierte Einführung in die algorithmische Geometrie gegeben. Im ersten Teil werden „klassische“ Probleme und Techniken behandelt, die sich auf polyedrische (= linear begrenzte) Objekte beziehen. Hierzu gehören beispielsweise Algorithmen zur Berechnung konvexer Hüllen und die Konstruktion von Voronoi-Diagrammen. Im zweiten Teil werden grundlegende Methoden der algorithmischen algebraischen Geometrie entwickelt und anhand von Anwendungen aus Computergrafik, Kurvenrekonstruktion und Robotik illustriert. Das Buch eignet sich für ein fortgeschrittenes Modul in den derzeit neu konzipierten Bachelor-Studiengängen in Mathematik und Informatik.

Ebene algebraische Kurven

Author: Gerd Fischer

Publisher: Springer-Verlag

ISBN: 3322803112

Category: Mathematics

Page: 177

View: 3286

DOWNLOAD NOW »
Neben den elementaren Dingen, wie Tangenten, Singularitäten und Wendepunkten werden auch schwierigere Begriffe wie lokale Zweige und Geschlecht behandelt. Höhepunkte sind die klassischen Formeln von Plücker und Clebsch, die Beziehungen zwischen verschiedenen globalen und lokalen Invarianten einer Kurve beschreiben.

Topics in Geometric Group Theory

Author: Pierre de la Harpe

Publisher: University of Chicago Press

ISBN: 9780226317199

Category: Mathematics

Page: 310

View: 8186

DOWNLOAD NOW »
In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.

The Geometry of Moduli Spaces of Sheaves

A Publication of the Max-Planck-Institut für Mathematik, Bonn

Author: Daniel Huybrechts,Manfred Lehn

Publisher: Vieweg+Teubner Verlag

ISBN: 9783663116257

Category: Technology & Engineering

Page: 270

View: 6694

DOWNLOAD NOW »
This book is intended to serve as an introduction to the theory of semistable sheaves and at the same time to provide a survey of recent research results on the geometry of moduli spaces. The first part introduces the basic concepts in the theory: Hilbert polynomial, slope, stability, Harder-Narasimhan filtration, Grothendieck's Quot-scheme. It presents detailed proofs of the Grauert-Mülich Theorem, the Bogomolov Inequality, the semistability of tensor products, and the boundedness of the family of semistable sheaves. It also gives a self-contained account of the construction of moduli spaces of semistable sheaves on a projective variety à la Gieseker, Maruyama, and Simpson. The second part presents some of the recent results of the geometry of moduli spaces of sheaves on an algebraic surface, following work of Mukai, O'Grady, Gieseker, Li and many others. In particular, moduli spaces of sheaves on K3 surfaces and determinant line bundles on the moduli spaces are treated in some detail. Other topics include the Serre correspondence, restriction of stable bundles to curves, symplectic structures, irreducibility and Kodaira-dimension of moduli spaces.

Theorie der konvexen Körper

Author: T. Bonnesen,W. Fenchel

Publisher: Springer-Verlag

ISBN: 364293014X

Category: Mathematics

Page: 168

View: 8060

DOWNLOAD NOW »
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Polynomial Methods in Combinatorics

Author: Larry Guth

Publisher: American Mathematical Soc.

ISBN: 1470428903

Category: Combinatorial geometry

Page: 273

View: 5331

DOWNLOAD NOW »
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.

Classical Topology and Combinatorial Group Theory

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 9780387979700

Category: Mathematics

Page: 334

View: 5158

DOWNLOAD NOW »
This introduction to topology stresses geometric aspects, focusing on historical background and visual interpretation of results. The 2nd edition offers 300 illustrations, numerous exercises, challenging open problems and a new chapter on unsolvable problems.

Experimental Mathematics

Author: V. I. Arnold

Publisher: American Mathematical Soc.

ISBN: 0821894161

Category: Combinatorial analysis

Page: 158

View: 9198

DOWNLOAD NOW »
One of the traditional ways mathematical ideas and even new areas of mathematics are created is from experiments. One of the best-known examples is that of the Fermat hypothesis, which was conjectured by Fermat in his attempts to find integer solutions for the famous Fermat equation. This hypothesis led to the creation of a whole field of knowledge, but it was proved only after several hundred years. This book, based on the author's lectures, presents several new directions of mathematical research. All of these directions are based on numerical experiments conducted by the author, which led to new hypotheses that currently remain open, i.e., are neither proved nor disproved. The hypotheses range from geometry and topology (statistics of plane curves and smooth functions) to combinatorics (combinatorial complexity and random permutations) to algebra and number theory (continuous fractions and Galois groups). For each subject, the author describes the problem and presents numerical results that led him to a particular conjecture. In the majority of cases there is an indication of how the readers can approach the formulated conjectures (at least by conducting more numerical experiments). Written in Arnold's unique style, the book is intended for a wide range of mathematicians, from high school students interested in exploring unusual areas of mathematics on their own, to college and graduate students, to researchers interested in gaining a new, somewhat nontraditional perspective on doing mathematics. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).

Anschauliche Physik

für Naturwissenschaftler

Author: Bogdan Povh,Elisabeth Soergel

Publisher: Springer-Verlag

ISBN: 3642544967

Category: Science

Page: 341

View: 4730

DOWNLOAD NOW »
Das vorliegende Buch richtet sich an Naturwissenschaftler mit ein- bis zweisemestriger Physik im Nebenfach sowie an Lehrer in Gymnasien und Fachschulen. Die Autoren sind als hervorragende Hochschullehrer bekannt und mit diesem Buch gelingt es ihnen, dem Leser das intuitive physikalische Denken zu vermitteln. Dies wird durch viele anschauliche Bilder unterstützt. Zu jeder wichtigen mathematischen Formel wird an Hand von Beispielen ihre Anwendung gezeigt und damit auch die Basis, selbst Probleme zu lösen, gegeben. Die Darstellung ist prägnant, trotzdem vermittelt sie dem Leser den heutigen Stand der Physik. Studenten, Lehrer und auch an den Naturwissenschaften Interessierte werden hier einen schnellen und effektiven Zugang zur modernen Physik finden.

Frühe mathematische Bildung – Ziele und Gelingensbedingungen für den Elementar- und Primarbereich

Author: Stiftung "Haus der kleinen Forscher"

Publisher: Verlag Barbara Budrich

ISBN: 3847410687

Category: Education

Page: 230

View: 9306

DOWNLOAD NOW »
Im Rahmen der Schriftenreihe „Wissenschaftliche Untersuchungen zur Arbeit der Stiftung ‚Haus der kleinen Forscher‘“ werden regelmäßig wissenschaftliche Beiträge von renommierten Expertinnen und Experten aus dem Bereich der frühen Bildung veröffentlicht. Diese Schriftenreihe dient einem fachlichen Dialog zwischen Stiftung, Wissenschaft und Praxis, mit dem Ziel, allen Kitas, Horten und Grundschulen in Deutschland fundierte Unterstützung für ihren frühkindlichen Bildungsauftrag zu geben. Der vorliegende achte Band der Reihe mit einem Geleitwort von Kristina Reiss stellt die Ziele und Gelingensbedingungen mathematischer Bildung im Elementarund Primarbereich in den Fokus. Christiane Benz, Meike Grüßing, Jens Holger Lorenz, Christoph Selter und Bernd Wollring spezifizieren in ihrer Expertise pädagogisch-inhaltliche Zieldimensionen mathematischer Bildung im Kita- und Grundschulalter. Neben einer theoretischen Fundierung verschiedener Zielbereiche werden Instrumente für deren Messung aufgeführt. Des Weiteren erörtern die Autorinnen und Autoren Gelingensbedingungen für eine effektive und wirkungsvolle frühe mathematische Bildung in der Praxis. Sie geben zudem Empfehlungen für die Weiterentwicklung der Stiftungsangebote und die wissenschaftliche Begleitung der Stiftungsarbeit im Bereich Mathematik. Das Schlusskapitel des Bandes beschreibt die Umsetzung dieser fachlichen Empfehlungen in den inhaltlichen Angeboten der Stiftung „Haus der kleinen Forscher“.

Lectures on Surfaces

(almost) Everything You Wanted to Know about Them

Author: A. B. Katok,Vaughn Climenhaga

Publisher: American Mathematical Soc.

ISBN: 0821846795

Category: Mathematics

Page: 286

View: 554

DOWNLOAD NOW »
Surfaces are among the most common and easily visualized mathematical objects, and their study brings into focus fundamental ideas, concepts, and methods from geometry, topology, complex analysis, Morse theory, and group theory. At the same time, many of those notions appear in a technically simpler and more graphic form than in their general 'natural' settings. The first, primarily expository, chapter introduces many of the principal actors - the round sphere, flat torus, Mobius strip, Klein bottle, elliptic plane, etc. - as well as various methods of describing surfaces, beginning with the traditional representation by equations in three-dimensional space, proceeding to parametric representation, and also introducing the less intuitive, but central for our purposes, representation as factor spaces.It concludes with a preliminary discussion of the metric geometry of surfaces, and the associated isometry groups. Subsequent chapters introduce fundamental mathematical structures - topological, combinatorial (piecewise linear), smooth, Riemannian (metric), and complex - in the specific context of surfaces. The focal point of the book is the Euler characteristic, which appears in many different guises and ties together concepts from combinatorics, algebraic topology, Morse theory, ordinary differential equations, and Riemannian geometry.The repeated appearance of the Euler characteristic provides both a unifying theme and a powerful illustration of the notion of an invariant in all those theories. The assumed background is the standard calculus sequence, some linear algebra, and rudiments of ODE and real analysis. All notions are introduced and discussed, and virtually all results proved, based on this background. This book is a result of the MASS course in geometry in the fall semester of 2007.