Lectures in Geometric Combinatorics

Author: Rekha R. Thomas

Publisher: American Mathematical Soc.

ISBN: 9780821841402

Category: Mathematics

Page: 143

View: 8099

DOWNLOAD NOW »
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics.The connections rely on Grobner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational aspects of the theory of polytopes.

Gröbner Bases

Statistics and Software Systems

Author: Takayuki Hibi

Publisher: Springer Science & Business Media

ISBN: 4431545743

Category: Mathematics

Page: 474

View: 6067

DOWNLOAD NOW »
The idea of the Gröbner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Gröbner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Gröbner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Gröbner basis. Since then, rapid development on the Gröbner basis has been achieved by many researchers, including Bernd Sturmfels. This book serves as a standard bible of the Gröbner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC’s of the Gröbner basis, requiring no special knowledge to understand those basic points. Starting from the introductory performance of the Gröbner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Gröbner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Gröbner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Gröbner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Gröbner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems.

Graphs for Pattern Recognition

Infeasible Systems of Linear Inequalities

Author: Damir Gainanov

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110481065

Category: Mathematics

Page: 158

View: 5715

DOWNLOAD NOW »
Data mining and pattern recognition are areas based on the mathematical constructions discussed in this monograph. By using combinatorial and graph theoretical techniques, it is shown how to tackle infeasible systems of linear inequalities. These are, in turn, building blocks of geometric decision rules for pattern recognition.

Algebraic Statistics

Author: Seth Sullivant

Publisher: American Mathematical Soc.

ISBN: 1470435179

Category: Geometry, Algebraic

Page: 490

View: 9458

DOWNLOAD NOW »
Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.

Algorithmische Geometrie

Polyedrische und algebraische Methoden

Author: Michael Joswig,Thorsten Theobald

Publisher: Springer-Verlag

ISBN: 3834894400

Category: Mathematics

Page: 266

View: 711

DOWNLOAD NOW »
In dem Lehrbuch wird eine mathematisch orientierte Einführung in die algorithmische Geometrie gegeben. Im ersten Teil werden „klassische“ Probleme und Techniken behandelt, die sich auf polyedrische (= linear begrenzte) Objekte beziehen. Hierzu gehören beispielsweise Algorithmen zur Berechnung konvexer Hüllen und die Konstruktion von Voronoi-Diagrammen. Im zweiten Teil werden grundlegende Methoden der algorithmischen algebraischen Geometrie entwickelt und anhand von Anwendungen aus Computergrafik, Kurvenrekonstruktion und Robotik illustriert. Das Buch eignet sich für ein fortgeschrittenes Modul in den derzeit neu konzipierten Bachelor-Studiengängen in Mathematik und Informatik.

Combinatorial Geometry and Its Algorithmic Applications

The Alcalá Lectures

Author: János Pach,Micha Sharir,Mîkā Šārîr

Publisher: American Mathematical Soc.

ISBN: 0821846914

Category: Mathematics

Page: 235

View: 8436

DOWNLOAD NOW »
This book, based on the authors' lecture series at a 2006 satellite meeting of the International Congress of Mathematicians, offers a comprehensive survey of core areas of combinatorial geometry. These lecture notes aptly describe both the history and the state of the art of these topics. These combinatorial techniques have found applications in areas of computer science ranging from graph drawing to frequency allocation in cellular networks.

Geometric Combinatorics

Author: Ezra Miller

Publisher: American Mathematical Soc.

ISBN: 0821837362

Category: Mathematics

Page: 691

View: 7468

DOWNLOAD NOW »
Geometric combinatorics describes a wide area of mathematics that is primarily the study of geometric objects and their combinatorial structure. Perhaps the most familiar examples are polytopes and simplicial complexes, but the subject is much broader. This volume is a compilation of expository articles at the interface between combinatorics and geometry, based on a three-week program of lectures at the Institute for Advanced Study/Park City Math Institute (IAS/PCMI) summer program on Geometric Combinatorics. The topics covered include posets, graphs, hyperplane arrangements, discrete Morse theory, and more. These objects are considered from multiple perspectives, such as in enumerative or topological contexts, or in the presence of discrete or continuous group actions. Most of the exposition is aimed at graduate students or researchers learning the material for the first time. Many of the articles include substantial numbers of exercises, and all include numerous examples. The reader is led quickly to the state of the art and current active research by worldwide authorities on their respective subjects. Information for our distributors: Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.

Algebra für Einsteiger

Von der Gleichungsauflösung zur Galois-Theorie

Author: Jörg Bewersdorff

Publisher: Springer-Verlag

ISBN: 332291562X

Category: Mathematics

Page: 193

View: 2502

DOWNLOAD NOW »
Eine leichtverständliche Einführung in die Algebra, die den historischen und konkreten Aspekt in den Vordergrund rückt. Das Buch liefert eine gute Motivation für die moderne Galois-Theorie, die den Studierenden oft so abstrakt und schwer erscheint.

Ebene algebraische Kurven

Author: Gerd Fischer

Publisher: Springer-Verlag

ISBN: 3322803112

Category: Mathematics

Page: 177

View: 3562

DOWNLOAD NOW »
Neben den elementaren Dingen, wie Tangenten, Singularitäten und Wendepunkten werden auch schwierigere Begriffe wie lokale Zweige und Geschlecht behandelt. Höhepunkte sind die klassischen Formeln von Plücker und Clebsch, die Beziehungen zwischen verschiedenen globalen und lokalen Invarianten einer Kurve beschreiben.

The Geometry of Moduli Spaces of Sheaves

A Publication of the Max-Planck-Institut für Mathematik, Bonn

Author: Daniel Huybrechts,Manfred Lehn

Publisher: Vieweg+Teubner Verlag

ISBN: 9783663116257

Category: Technology & Engineering

Page: 270

View: 7666

DOWNLOAD NOW »
This book is intended to serve as an introduction to the theory of semistable sheaves and at the same time to provide a survey of recent research results on the geometry of moduli spaces. The first part introduces the basic concepts in the theory: Hilbert polynomial, slope, stability, Harder-Narasimhan filtration, Grothendieck's Quot-scheme. It presents detailed proofs of the Grauert-Mülich Theorem, the Bogomolov Inequality, the semistability of tensor products, and the boundedness of the family of semistable sheaves. It also gives a self-contained account of the construction of moduli spaces of semistable sheaves on a projective variety à la Gieseker, Maruyama, and Simpson. The second part presents some of the recent results of the geometry of moduli spaces of sheaves on an algebraic surface, following work of Mukai, O'Grady, Gieseker, Li and many others. In particular, moduli spaces of sheaves on K3 surfaces and determinant line bundles on the moduli spaces are treated in some detail. Other topics include the Serre correspondence, restriction of stable bundles to curves, symplectic structures, irreducibility and Kodaira-dimension of moduli spaces.

Combinatorial Geometry

Author: János Pach,Pankaj K. Agarwal

Publisher: John Wiley & Sons

ISBN: 1118031369

Category: Mathematics

Page: 376

View: 1012

DOWNLOAD NOW »
A complete, self-contained introduction to a powerful and resurgingmathematical discipline . Combinatorial Geometry presents andexplains with complete proofs some of the most important resultsand methods of this relatively young mathematical discipline,started by Minkowski, Fejes Toth, Rogers, and Erd???s. Nearly halfthe results presented in this book were discovered over the pasttwenty years, and most have never before appeared in any monograph.Combinatorial Geometry will be of particular interest tomathematicians, computer scientists, physicists, and materialsscientists interested in computational geometry, robotics, sceneanalysis, and computer-aided design. It is also a superb textbook,complete with end-of-chapter problems and hints to their solutionsthat help students clarify their understanding and test theirmastery of the material. Topics covered include: * Geometric number theory * Packing and covering with congruent convex disks * Extremal graph and hypergraph theory * Distribution of distances among finitely many points * Epsilon-nets and Vapnik--Chervonenkis dimension * Geometric graph theory * Geometric discrepancy theory * And much more

Differentialgeometrie

Kurven - Flächen - Mannigfaltigkeiten

Author: Wolfgang Kühnel

Publisher: Springer-Verlag

ISBN: 3834896551

Category: Mathematics

Page: 280

View: 6373

DOWNLOAD NOW »
Dieses Buch ist eine Einführung in die Differentialgeometrie. Zunächst geht es um die klassischen Aspekte wie die Geometrie von Kurven und Flächen, bevor dann höherdimensionale Flächen sowie abstrakte Mannigfaltigkeiten betrachtet werden. Die Nahtstelle ist dabei das zentrale Kapitel "Die innere Geometrie von Flächen". Dieses führt den Leser bis hin zu dem berühmten Satz von Gauß-Bonnet, der ein entscheidendes Bindeglied zwischen lokaler und globaler Geometrie darstellt. Die zweite Hälfte des Buches ist der Riemannschen Geometrie gewidmet. Den Abschluss bildet ein Kapitel über "Einstein-Räume", die eine große Bedeutung sowohl in der "Reinen Mathematik" als auch in der Allgemeinen Relativitätstheorie von A. Einstein haben. Es wird großer Wert auf Anschaulichkeit gelegt, was durch zahlreiche Abbildungen unterstützt wird. Im Laufe der Neuauflagen wurde der Text erweitert, neue Aufgaben wurden hinzugefügt und am Ende des Buches wurden zusätzliche Hinweise zur Lösung der Übungsaufgaben ergänzt. Der Text wurde für die fünfte Auflage gründlich durchgesehen und an einigen Stellen verbessert.

Statistik-Workshop für Programmierer

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 4886

DOWNLOAD NOW »
Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Polynomial Methods in Combinatorics

Author: Larry Guth

Publisher: American Mathematical Soc.

ISBN: 1470428903

Category: Combinatorial geometry

Page: 273

View: 8149

DOWNLOAD NOW »
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.

Lectures on Surfaces

(almost) Everything You Wanted to Know about Them

Author: A. B. Katok,Vaughn Climenhaga

Publisher: American Mathematical Soc.

ISBN: 0821846795

Category: Mathematics

Page: 286

View: 5142

DOWNLOAD NOW »
Surfaces are among the most common and easily visualized mathematical objects, and their study brings into focus fundamental ideas, concepts, and methods from geometry, topology, complex analysis, Morse theory, and group theory. At the same time, many of those notions appear in a technically simpler and more graphic form than in their general 'natural' settings. The first, primarily expository, chapter introduces many of the principal actors - the round sphere, flat torus, Mobius strip, Klein bottle, elliptic plane, etc. - as well as various methods of describing surfaces, beginning with the traditional representation by equations in three-dimensional space, proceeding to parametric representation, and also introducing the less intuitive, but central for our purposes, representation as factor spaces.It concludes with a preliminary discussion of the metric geometry of surfaces, and the associated isometry groups. Subsequent chapters introduce fundamental mathematical structures - topological, combinatorial (piecewise linear), smooth, Riemannian (metric), and complex - in the specific context of surfaces. The focal point of the book is the Euler characteristic, which appears in many different guises and ties together concepts from combinatorics, algebraic topology, Morse theory, ordinary differential equations, and Riemannian geometry.The repeated appearance of the Euler characteristic provides both a unifying theme and a powerful illustration of the notion of an invariant in all those theories. The assumed background is the standard calculus sequence, some linear algebra, and rudiments of ODE and real analysis. All notions are introduced and discussed, and virtually all results proved, based on this background. This book is a result of the MASS course in geometry in the fall semester of 2007.

Topics in Geometric Group Theory

Author: Pierre de la Harpe

Publisher: University of Chicago Press

ISBN: 9780226317199

Category: Mathematics

Page: 310

View: 7751

DOWNLOAD NOW »
In this book, Pierre de la Harpe provides a concise and engaging introduction to geometric group theory, a new method for studying infinite groups via their intrinsic geometry that has played a major role in mathematics over the past two decades. A recognized expert in the field, de la Harpe adopts a hands-on approach, illustrating key concepts with numerous concrete examples. The first five chapters present basic combinatorial and geometric group theory in a unique and refreshing way, with an emphasis on finitely generated versus finitely presented groups. In the final three chapters, de la Harpe discusses new material on the growth of groups, including a detailed treatment of the "Grigorchuk group." Most sections are followed by exercises and a list of problems and complements, enhancing the book's value for students; problems range from slightly more difficult exercises to open research problems in the field. An extensive list of references directs readers to more advanced results as well as connections with other fields.

Discrete Mathematics

Elementary and Beyond

Author: László Lovász,József Pelikán,Katalin Vesztergombi

Publisher: Springer Science & Business Media

ISBN: 0387217770

Category: Mathematics

Page: 284

View: 8873

DOWNLOAD NOW »
Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.