Author: N.A

Publisher: N.A

ISBN: 9780321287137

Category: Algebras, Linear

Page: 492

View: 5048

Skip to content
# Search Results for: **linear-algebra-and-its-applications**

DOWNLOAD NOW »

DOWNLOAD NOW »

Linear Algebra and Its Applications, Second Edition fulfills the need for a book that will permit the teaching of the applications of linear algebra, in combination with the underlying mathematics. Comprised of eight chapters, the book aims to provide a comprehensive presentation of the concepts and methods in linear algebra. The text starts with the discussion of the Gaussian elimination, the simplest and most useful method of solution. This chapter is followed by chapters that focus on the study of vector spaces, projections and inner products, determinants, and eigenvalues. Discussions on positive definite matrices, computations with matrices, and introduction to linear programming and game theory are provided as well. This text is intended for use by college students.

DOWNLOAD NOW »

Praise for the First Edition ". . .recommended for the teacher and researcher as well as for graduate students. In fact, [it] has a place on every mathematician's bookshelf." -American Mathematical Monthly Linear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features student-friendly additions that enhance the book's accessibility, including expanded topical coverage in the early chapters, additional exercises, and solutions to selected problems. Beginning chapters are devoted to the abstract structure of finite dimensional vector spaces, and subsequent chapters address convexity and the duality theorem as well as describe the basics of normed linear spaces and linear maps between normed spaces. Further updates and revisions have been included to reflect the most up-to-date coverage of the topic, including: The QR algorithm for finding the eigenvalues of a self-adjoint matrix The Householder algorithm for turning self-adjoint matrices into tridiagonal form The compactness of the unit ball as a criterion of finite dimensionality of a normed linear space Additionally, eight new appendices have been added and cover topics such as: the Fast Fourier Transform; the spectral radius theorem; the Lorentz group; the compactness criterion for finite dimensionality; the characterization of commentators; proof of Liapunov's stability criterion; the construction of the Jordan Canonical form of matrices; and Carl Pearcy's elegant proof of Halmos' conjecture about the numerical range of matrices. Clear, concise, and superbly organized, Linear Algebra and Its Applications, Second Edition serves as an excellent text for advanced undergraduate- and graduate-level courses in linear algebra. Its comprehensive treatment of the subject also makes it an ideal reference or self-study for industry professionals.

DOWNLOAD NOW »

Linear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students' understanding of these concepts is vital to their mastery of the subject. Lay introduces these concepts early in a familiar, concrete Rn setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible.

DOWNLOAD NOW »

NOTE: This edition features the same content as the traditional text in a convenient, three-hole-punched, loose-leaf version. Books a la Carte also offer a great value--this format costs significantly less than a new textbook. Before purchasing, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products. xxxxxxxxxxxxxxx For courses in linear algebra. With traditional linear algebra texts, the course is relatively easy for students during the early stages as material is presented in a familiar, concrete setting. However, when abstract concepts are introduced, students often hit a wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations) are not easily understood and require time to assimilate. These concepts are fundamental to the study of linear algebra, so students' understanding of them is vital to mastering the subject. This text makes these concepts more accessible by introducing them early in a familiar, concrete Rn setting, developing them gradually, and returning to them throughout the text so that when they are discussed in the abstract, students are readily able to understand. Also available with MyMathLab MyMathLab is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. MyMathLab includes assignable algorithmic exercises, the complete eBook, interactive figures, tools to personalize learning, and more.

DOWNLOAD NOW »

In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.

DOWNLOAD NOW »

DOWNLOAD NOW »

DOWNLOAD NOW »

Includes detailed step-by-step solutions to selected odd-numbered problems.

DOWNLOAD NOW »

The material presented in this book corresponds to a semester-long course, ``Linear Algebra and Differential Equations'', taught to sophomore students at UC Berkeley. In contrast with typical undergraduate texts, the book offers a unifying point of view on the subject, namely that linear algebra solves several clearly-posed classification problems about such geometric objects as quadratic forms and linear transformations. This attractive viewpoint on the classical theory agrees well with modern tendencies in advanced mathematics and is shared by many research mathematicians. However, the idea of classification seldom finds its way to basic programs in mathematics, and is usually unfamiliar to undergraduates. To meet the challenge, the book first guides the reader through the entire agenda of linear algebra in the elementary environment of two-dimensional geometry, and prior to spelling out the general idea and employing it in higher dimensions, shows how it works in applications such as linear ODE systems or stability of equilibria. Appropriate as a text for regular junior and honors sophomore level college classes, the book is accessible to high school students familiar with basic calculus, and can also be useful to engineering graduate students.

DOWNLOAD NOW »

Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra Detailed explanations and examples A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra Examples from engineering and science applications

DOWNLOAD NOW »

Praise for the Third Edition "This volume is ground-breaking in terms of mathematical texts in that it does not teach from a detached perspective, but instead, looks to show students that competent mathematicians bring an intuitive understanding to the subject rather than just a master of applications." — Electric Review A comprehensive introduction, Linear Algebra: Ideas and Applications, Fourth Edition provides a discussion of the theory and applications of linear algebra that blends abstract and computational concepts. With a focus on the development of mathematical intuition, the book emphasizes the need to understand both the applications of a particular technique and the mathematical ideas underlying the technique. The book introduces each new concept in the context of an explicit numerical example, which allows the abstract concepts to grow organically out of the necessity to solve specific problems. The intuitive discussions are consistently followed by rigorous statements of results and proofs. Linear Algebra: Ideas and Applications, Fourth Edition also features: Two new and independent sections on the rapidly developing subject of wavelets A thoroughly updated section on electrical circuit theory Illuminating applications of linear algebra with self-study questions for additional study End-of-chapter summaries and sections with true-false questions to aid readers with further comprehension of the presented material Numerous computer exercises throughout using MATLAB® code A companion website with translations of the book’s computer exercises into MapleTM code Linear Algebra: Ideas and Applications, Fourth Edition is an excellent undergraduate-level textbook for one or two semester undergraduate courses in mathematics, science, computer science, and engineering. With an emphasis on intuition development, the book is also an ideal self-study reference. Richard C. Penney, PhD, is Professor in the Department of Mathematics and Director of the Mathematics/Statistics Actuarial Science Program at Purdue University. He has authored numerous journal articles, received several major teaching awards, and is an active researcher.

DOWNLOAD NOW »

Linear Algebra and Linear Models comprises a concise and rigorous introduction to linear algebra required for statistics followed by the basic aspects of the theory of linear estimation and hypothesis testing. The emphasis is on the approach using generalized inverses. Topics such as the multivariate normal distribution and distribution of quadratic forms are included. For this third edition, the material has been reorganised to develop the linear algebra in the first six chapters, to serve as a first course on linear algebra that is especially suitable for students of statistics or for those looking for a matrix theoretic approach to the subject. Other key features include: coverage of topics such as rank additivity, inequalities for eigenvalues and singular values; a new chapter on linear mixed models; over seventy additional problems on rank: the matrix rank is an important and rich topic with connections to many aspects of linear algebra such as generalized inverses, idempotent matrices and partitioned matrices. This text is aimed primarily at advanced undergraduate and first-year graduate students taking courses in linear algebra, linear models, multivariate analysis and design of experiments. A wealth of exercises, complete with hints and solutions, help to consolidate understanding. Researchers in mathematics and statistics will also find the book a useful source of results and problems.

DOWNLOAD NOW »

Rooted in a pedagogically successful problem-solving approach to linear algebra, the present work fills a gap in the literature that is sharply divided between elementary texts and books that are too advanced to appeal to a wide audience. It clearly develops the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality, while simultaneously emphasizing applications and connections to fields such as biology, economics, computer graphics, electrical engineering, cryptography, and political science. Ideal as an introduction to linear algebra, the extensive exercises and well-chosen applications also make this text suitable for advanced courses at the junior or senior undergraduate level. Furthermore, it can serve as a colorful supplementary problem book, reference, or self-study manual for professional scientists and mathematicians. Complete with bibliography and index, "Essential Linear Algebra with Applications" is a natural bridge between pure and applied mathematics and the natural and social sciences, appropriate for any student or researcher who needs a strong footing in the theory, problem-solving, and model-building that are the subject’s hallmark.

DOWNLOAD NOW »

In this appealing and well-written text, Richard Bronson starts with the concrete and computational, and leads the reader to a choice of major applications. The first three chapters address the basics: matrices, vector spaces, and linear transformations. The next three cover eigenvalues, Euclidean inner products, and Jordan canonical forms, offering possibilities that can be tailored to the instructor's taste and to the length of the course. Bronson's approach to computation is modern and algorithmic, and his theory is clean and straightforward. Throughout, the views of the theory presented are broad and balanced and key material is highlighted in the text and summarized at the end of each chapter. The book also includes ample exercises with answers and hints. Prerequisite: One year of calculus is recommended. Introduces deductive reasoning and helps the reader develop a facility with mathematical proofs Provides a balanced approach to computation and theory by offering computational algorithms for finding eigenvalues and eigenvectors Offers excellent exercise sets, ranging from drill to theoretical/challeging along with useful and interesting applications not found in other introductory linear algebra texts

DOWNLOAD NOW »

This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.

DOWNLOAD NOW »

Linear algebra permeates mathematics, perhaps more so than any other single subject. It plays an essential role in pure and applied mathematics, statistics, computer science, and many aspects of physics and engineering. This book conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that many of us wish we had been taught as graduate students. Roughly the first third of the book covers the basic material of a first course in linear algebra. The remaining chapters are devoted to applications drawn from vector calculus, numerical analysis, control theory, complex analysis, convexity and functional analysis. In particular, fixed point theorems, extremal problems, matrix equations, zero location and eigenvalue location problems, and matrices with nonnegative entries are discussed. Appendices on useful facts from analysis and supplementary information from complex function theory are also provided for the convenience of the reader. In this new edition, most of the chapters in the first edition have been revised, some extensively. The revisions include changes in a number of proofs, either to simplify the argument, to make the logic clearer or, on occasion, to sharpen the result. New introductory sections on linear programming, extreme points for polyhedra and a Nevanlinna-Pick interpolation problem have been added, as have some very short introductory sections on the mathematics behind Google, Drazin inverses, band inverses and applications of SVD together with a number of new exercises.

DOWNLOAD NOW »

Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical sciences. Also included are several numerical applications, complete with Mathematica solutions and code, giving the student a "hands-on" introduction to numerical analysis. Linear Algebra and Linear Operators in Engineering is ideally suited as the main text of an introductory graduate course, and is a fine instrument for self-study or as a general reference for those applying mathematics. Contains numerous Mathematica examples complete with full code and solutions Provides complete numerical algorithms for solving linear and nonlinear problems Spans elementary notions to the functional theory of linear integral and differential equations Includes over 130 examples, illustrations, and exercises and over 220 problems ranging from basic concepts to challenging applications Presents real-life applications from chemical, mechanical, and electrical engineering and the physical sciences

DOWNLOAD NOW »

Teach Your Students Both the Mathematics of Numerical Methods and the Art of Computer Programming Introduction to Computational Linear Algebra presents classroom-tested material on computational linear algebra and its application to numerical solutions of partial and ordinary differential equations. The book is designed for senior undergraduate students in mathematics and engineering as well as first-year graduate students in engineering and computational science. The text first introduces BLAS operations of types 1, 2, and 3 adapted to a scientific computer environment, specifically MATLAB®. It next covers the basic mathematical tools needed in numerical linear algebra and discusses classical material on Gauss decompositions as well as LU and Cholesky’s factorizations of matrices. The text then shows how to solve linear least squares problems, provides a detailed numerical treatment of the algebraic eigenvalue problem, and discusses (indirect) iterative methods to solve a system of linear equations. The final chapter illustrates how to solve discretized sparse systems of linear equations. Each chapter ends with exercises and computer projects.

DOWNLOAD NOW »

Full eBook Read and Download

Author: N.A

Publisher: N.A

ISBN: 9780321287137

Category: Algebras, Linear

Page: 492

View: 5048

Author: Gilbert Strang

Publisher: Academic Press

ISBN: 1483265110

Category: Mathematics

Page: 428

View: 1919

Linear Algebra and Its Applications, Second Edition fulfills the need for a book that will permit the teaching of the applications of linear algebra, in combination with the underlying mathematics. Comprised of eight chapters, the book aims to provide a comprehensive presentation of the concepts and methods in linear algebra. The text starts with the discussion of the Gaussian elimination, the simplest and most useful method of solution. This chapter is followed by chapters that focus on the study of vector spaces, projections and inner products, determinants, and eigenvalues. Discussions on positive definite matrices, computations with matrices, and introduction to linear programming and game theory are provided as well. This text is intended for use by college students.

Author: Peter D. Lax

Publisher: John Wiley & Sons

ISBN: 1118626923

Category: Mathematics

Page: 392

View: 6096

Praise for the First Edition ". . .recommended for the teacher and researcher as well as for graduate students. In fact, [it] has a place on every mathematician's bookshelf." -American Mathematical Monthly Linear Algebra and Its Applications, Second Edition presents linear algebra as the theory and practice of linear spaces and linear maps with a unique focus on the analytical aspects as well as the numerous applications of the subject. In addition to thorough coverage of linear equations, matrices, vector spaces, game theory, and numerical analysis, the Second Edition features student-friendly additions that enhance the book's accessibility, including expanded topical coverage in the early chapters, additional exercises, and solutions to selected problems. Beginning chapters are devoted to the abstract structure of finite dimensional vector spaces, and subsequent chapters address convexity and the duality theorem as well as describe the basics of normed linear spaces and linear maps between normed spaces. Further updates and revisions have been included to reflect the most up-to-date coverage of the topic, including: The QR algorithm for finding the eigenvalues of a self-adjoint matrix The Householder algorithm for turning self-adjoint matrices into tridiagonal form The compactness of the unit ball as a criterion of finite dimensionality of a normed linear space Additionally, eight new appendices have been added and cover topics such as: the Fast Fourier Transform; the spectral radius theorem; the Lorentz group; the compactness criterion for finite dimensionality; the characterization of commentators; proof of Liapunov's stability criterion; the construction of the Jordan Canonical form of matrices; and Carl Pearcy's elegant proof of Halmos' conjecture about the numerical range of matrices. Clear, concise, and superbly organized, Linear Algebra and Its Applications, Second Edition serves as an excellent text for advanced undergraduate- and graduate-level courses in linear algebra. Its comprehensive treatment of the subject also makes it an ideal reference or self-study for industry professionals.

Author: David C. Lay

Publisher: N.A

ISBN: 9780321417619

Category: Algebras, Linear

Page: 576

View: 7174

Linear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students' understanding of these concepts is vital to their mastery of the subject. Lay introduces these concepts early in a familiar, concrete Rn setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible.

Author: David C. Lay,Steven R. Lay,Judi J. McDonald

Publisher: Pearson

ISBN: 9780321982650

Category: Mathematics

Page: 576

View: 5086

NOTE: This edition features the same content as the traditional text in a convenient, three-hole-punched, loose-leaf version. Books a la Carte also offer a great value--this format costs significantly less than a new textbook. Before purchasing, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products. xxxxxxxxxxxxxxx For courses in linear algebra. With traditional linear algebra texts, the course is relatively easy for students during the early stages as material is presented in a familiar, concrete setting. However, when abstract concepts are introduced, students often hit a wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations) are not easily understood and require time to assimilate. These concepts are fundamental to the study of linear algebra, so students' understanding of them is vital to mastering the subject. This text makes these concepts more accessible by introducing them early in a familiar, concrete Rn setting, developing them gradually, and returning to them throughout the text so that when they are discussed in the abstract, students are readily able to understand. Also available with MyMathLab MyMathLab is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. MyMathLab includes assignable algorithmic exercises, the complete eBook, interactive figures, tools to personalize learning, and more.

*Theory and Applications*

Author: Denis Serre

Publisher: Springer Science & Business Media

ISBN: 9781441976833

Category: Mathematics

Page: 289

View: 5856

In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.

Author: Anne C. Baker,Hugh L. Porteous

Publisher: Prentice Hall

ISBN: 9780135384558

Category: Mathematics

Page: 424

View: 4911

*Study guide*

Author: David C. Lay

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 4521

Author: Gilbert Strang,Brett Coonley,Andrew Bulman-Fleming

Publisher: Brooks/Cole Publishing Company

ISBN: 9780495013259

Category: Mathematics

Page: 65

View: 5822

Includes detailed step-by-step solutions to selected odd-numbered problems.

Author: Alexander Givental

Publisher: American Mathematical Soc.

ISBN: 9780821828502

Category: Mathematics

Page: 132

View: 4315

The material presented in this book corresponds to a semester-long course, ``Linear Algebra and Differential Equations'', taught to sophomore students at UC Berkeley. In contrast with typical undergraduate texts, the book offers a unifying point of view on the subject, namely that linear algebra solves several clearly-posed classification problems about such geometric objects as quadratic forms and linear transformations. This attractive viewpoint on the classical theory agrees well with modern tendencies in advanced mathematics and is shared by many research mathematicians. However, the idea of classification seldom finds its way to basic programs in mathematics, and is usually unfamiliar to undergraduates. To meet the challenge, the book first guides the reader through the entire agenda of linear algebra in the elementary environment of two-dimensional geometry, and prior to spelling out the general idea and employing it in higher dimensions, shows how it works in applications such as linear ODE systems or stability of equilibria. Appropriate as a text for regular junior and honors sophomore level college classes, the book is accessible to high school students familiar with basic calculus, and can also be useful to engineering graduate students.

*Using MATLAB*

Author: William Ford

Publisher: Academic Press

ISBN: 0123947847

Category: Mathematics

Page: 628

View: 2653

Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica. Six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra Detailed explanations and examples A through discussion of the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra Examples from engineering and science applications

*Ideas and Applications*

Author: Richard C. Penney

Publisher: John Wiley & Sons

ISBN: 1118909585

Category: Mathematics

Page: 512

View: 6158

Praise for the Third Edition "This volume is ground-breaking in terms of mathematical texts in that it does not teach from a detached perspective, but instead, looks to show students that competent mathematicians bring an intuitive understanding to the subject rather than just a master of applications." — Electric Review A comprehensive introduction, Linear Algebra: Ideas and Applications, Fourth Edition provides a discussion of the theory and applications of linear algebra that blends abstract and computational concepts. With a focus on the development of mathematical intuition, the book emphasizes the need to understand both the applications of a particular technique and the mathematical ideas underlying the technique. The book introduces each new concept in the context of an explicit numerical example, which allows the abstract concepts to grow organically out of the necessity to solve specific problems. The intuitive discussions are consistently followed by rigorous statements of results and proofs. Linear Algebra: Ideas and Applications, Fourth Edition also features: Two new and independent sections on the rapidly developing subject of wavelets A thoroughly updated section on electrical circuit theory Illuminating applications of linear algebra with self-study questions for additional study End-of-chapter summaries and sections with true-false questions to aid readers with further comprehension of the presented material Numerous computer exercises throughout using MATLAB® code A companion website with translations of the book’s computer exercises into MapleTM code Linear Algebra: Ideas and Applications, Fourth Edition is an excellent undergraduate-level textbook for one or two semester undergraduate courses in mathematics, science, computer science, and engineering. With an emphasis on intuition development, the book is also an ideal self-study reference. Richard C. Penney, PhD, is Professor in the Department of Mathematics and Director of the Mathematics/Statistics Actuarial Science Program at Purdue University. He has authored numerous journal articles, received several major teaching awards, and is an active researcher.

Author: Ravindra B. Bapat

Publisher: Springer Science & Business Media

ISBN: 1447127390

Category: Mathematics

Page: 167

View: 7198

Linear Algebra and Linear Models comprises a concise and rigorous introduction to linear algebra required for statistics followed by the basic aspects of the theory of linear estimation and hypothesis testing. The emphasis is on the approach using generalized inverses. Topics such as the multivariate normal distribution and distribution of quadratic forms are included. For this third edition, the material has been reorganised to develop the linear algebra in the first six chapters, to serve as a first course on linear algebra that is especially suitable for students of statistics or for those looking for a matrix theoretic approach to the subject. Other key features include: coverage of topics such as rank additivity, inequalities for eigenvalues and singular values; a new chapter on linear mixed models; over seventy additional problems on rank: the matrix rank is an important and rich topic with connections to many aspects of linear algebra such as generalized inverses, idempotent matrices and partitioned matrices. This text is aimed primarily at advanced undergraduate and first-year graduate students taking courses in linear algebra, linear models, multivariate analysis and design of experiments. A wealth of exercises, complete with hints and solutions, help to consolidate understanding. Researchers in mathematics and statistics will also find the book a useful source of results and problems.

*A Problem-Solving Approach*

Author: Titu Andreescu

Publisher: Springer

ISBN: 0817646361

Category: Mathematics

Page: 491

View: 384

Rooted in a pedagogically successful problem-solving approach to linear algebra, the present work fills a gap in the literature that is sharply divided between elementary texts and books that are too advanced to appeal to a wide audience. It clearly develops the theoretical foundations of vector spaces, linear equations, matrix algebra, eigenvectors, and orthogonality, while simultaneously emphasizing applications and connections to fields such as biology, economics, computer graphics, electrical engineering, cryptography, and political science. Ideal as an introduction to linear algebra, the extensive exercises and well-chosen applications also make this text suitable for advanced courses at the junior or senior undergraduate level. Furthermore, it can serve as a colorful supplementary problem book, reference, or self-study manual for professional scientists and mathematicians. Complete with bibliography and index, "Essential Linear Algebra with Applications" is a natural bridge between pure and applied mathematics and the natural and social sciences, appropriate for any student or researcher who needs a strong footing in the theory, problem-solving, and model-building that are the subject’s hallmark.

*Algorithms, Applications, and Techniques*

Author: Richard Bronson,Gabriel B. Costa,John T. Saccoman

Publisher: Academic Press

ISBN: 0123978114

Category: Mathematics

Page: 536

View: 6061

In this appealing and well-written text, Richard Bronson starts with the concrete and computational, and leads the reader to a choice of major applications. The first three chapters address the basics: matrices, vector spaces, and linear transformations. The next three cover eigenvalues, Euclidean inner products, and Jordan canonical forms, offering possibilities that can be tailored to the instructor's taste and to the length of the course. Bronson's approach to computation is modern and algorithmic, and his theory is clean and straightforward. Throughout, the views of the theory presented are broad and balanced and key material is highlighted in the text and summarized at the end of each chapter. The book also includes ample exercises with answers and hints. Prerequisite: One year of calculus is recommended. Introduces deductive reasoning and helps the reader develop a facility with mathematical proofs Provides a balanced approach to computation and theory by offering computational algorithms for finding eigenvalues and eigenvectors Offers excellent exercise sets, ranging from drill to theoretical/challeging along with useful and interesting applications not found in other introductory linear algebra texts

Author: Shmuel Friedland,Mohsen Aliabadi

Publisher: SIAM

ISBN: 161197514X

Category: Algebras, Linear

Page: 285

View: 2394

This introductory textbook grew out of several courses in linear algebra given over more than a decade and includes such helpful material as constructive discussions about the motivation of fundamental concepts, many worked-out problems in each chapter, and topics rarely covered in typical linear algebra textbooks.The authors use abstract notions and arguments to give the complete proof of the Jordan canonical form and, more generally, the rational canonical form of square matrices over fields. They also provide the notion of tensor products of vector spaces and linear transformations. Matrices are treated in depth, with coverage of the stability of matrix iterations, the eigenvalue properties of linear transformations in inner product spaces, singular value decomposition, and min-max characterizations of Hermitian matrices and nonnegative irreducible matrices. The authors show the many topics and tools encompassed by modern linear algebra to emphasize its relationship to other areas of mathematics. The text is intended for advanced undergraduate students. Beginning graduate students seeking an introduction to the subject will also find it of interest.

*Second Edition*

Author: Harry Dym

Publisher: American Mathematical Soc.

ISBN: 1470409089

Category: Mathematics

Page: 585

View: 515

Linear algebra permeates mathematics, perhaps more so than any other single subject. It plays an essential role in pure and applied mathematics, statistics, computer science, and many aspects of physics and engineering. This book conveys in a user-friendly way the basic and advanced techniques of linear algebra from the point of view of a working analyst. The techniques are illustrated by a wide sample of applications and examples that are chosen to highlight the tools of the trade. In short, this is material that many of us wish we had been taught as graduate students. Roughly the first third of the book covers the basic material of a first course in linear algebra. The remaining chapters are devoted to applications drawn from vector calculus, numerical analysis, control theory, complex analysis, convexity and functional analysis. In particular, fixed point theorems, extremal problems, matrix equations, zero location and eigenvalue location problems, and matrices with nonnegative entries are discussed. Appendices on useful facts from analysis and supplementary information from complex function theory are also provided for the convenience of the reader. In this new edition, most of the chapters in the first edition have been revised, some extensively. The revisions include changes in a number of proofs, either to simplify the argument, to make the logic clearer or, on occasion, to sharpen the result. New introductory sections on linear programming, extreme points for polyhedra and a Nevanlinna-Pick interpolation problem have been added, as have some very short introductory sections on the mathematics behind Google, Drazin inverses, band inverses and applications of SVD together with a number of new exercises.

*With Applications in Mathematica®*

Author: H. Ted Davis,Kendall T. Thomson

Publisher: Elsevier

ISBN: 9780080510248

Category: Mathematics

Page: 547

View: 5460

Designed for advanced engineering, physical science, and applied mathematics students, this innovative textbook is an introduction to both the theory and practical application of linear algebra and functional analysis. The book is self-contained, beginning with elementary principles, basic concepts, and definitions. The important theorems of the subject are covered and effective application tools are developed, working up to a thorough treatment of eigenanalysis and the spectral resolution theorem. Building on a fundamental understanding of finite vector spaces, infinite dimensional Hilbert spaces are introduced from analogy. Wherever possible, theorems and definitions from matrix theory are called upon to drive the analogy home. The result is a clear and intuitive segue to functional analysis, culminating in a practical introduction to the functional theory of integral and differential operators. Numerous examples, problems, and illustrations highlight applications from all over engineering and the physical sciences. Also included are several numerical applications, complete with Mathematica solutions and code, giving the student a "hands-on" introduction to numerical analysis. Linear Algebra and Linear Operators in Engineering is ideally suited as the main text of an introductory graduate course, and is a fine instrument for self-study or as a general reference for those applying mathematics. Contains numerous Mathematica examples complete with full code and solutions Provides complete numerical algorithms for solving linear and nonlinear problems Spans elementary notions to the functional theory of linear integral and differential equations Includes over 130 examples, illustrations, and exercises and over 220 problems ranging from basic concepts to challenging applications Presents real-life applications from chemical, mechanical, and electrical engineering and the physical sciences

Author: Nabil Nassif,Jocelyne Erhel,Bernard Philippe

Publisher: CRC Press

ISBN: 1482258714

Category: Mathematics

Page: 259

View: 7785

Teach Your Students Both the Mathematics of Numerical Methods and the Art of Computer Programming Introduction to Computational Linear Algebra presents classroom-tested material on computational linear algebra and its application to numerical solutions of partial and ordinary differential equations. The book is designed for senior undergraduate students in mathematics and engineering as well as first-year graduate students in engineering and computational science. The text first introduces BLAS operations of types 1, 2, and 3 adapted to a scientific computer environment, specifically MATLAB®. It next covers the basic mathematical tools needed in numerical linear algebra and discusses classical material on Gauss decompositions as well as LU and Cholesky’s factorizations of matrices. The text then shows how to solve linear least squares problems, provides a detailed numerical treatment of the algebraic eigenvalue problem, and discusses (indirect) iterative methods to solve a system of linear equations. The final chapter illustrates how to solve discretized sparse systems of linear equations. Each chapter ends with exercises and computer projects.

Author: W. Keith Nicholson

Publisher: N.A

ISBN: 9780070401099

Category: Algebras, Linear

Page: 582

View: 3037