Mathematical Analysis I

Author: Claudio Canuto,Anita Tabacco

Publisher: Springer

ISBN: 3319127721

Category: Mathematics

Page: 492

View: 3976

DOWNLOAD NOW »
The purpose of the volume is to provide a support for a first course in Mathematics. The contents are organised to appeal especially to Engineering, Physics and Computer Science students, all areas in which mathematical tools play a crucial role. Basic notions and methods of differential and integral calculus for functions of one real variable are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The layout has a specifically-designed modular nature, allowing the instructor to make flexible didactical choices when planning an introductory lecture course. The book may in fact be employed at three levels of depth. At the elementary level the student is supposed to grasp the very essential ideas and familiarise with the corresponding key techniques. Proofs to the main results befit the intermediate level, together with several remarks and complementary notes enhancing the treatise. The last, and farthest-reaching, level requires the additional study of the material contained in the appendices, which enable the strongly motivated reader to explore further into the subject. Definitions and properties are furnished with substantial examples to stimulate the learning process. Over 350 solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a first course of Mathematics.

Mathematical Analysis II

Author: Claudio Canuto,Anita Tabacco

Publisher: Springer

ISBN: 3319127578

Category: Mathematics

Page: 559

View: 3354

DOWNLOAD NOW »
The purpose of the volume is to provide a support textbook for a second lecture course on Mathematical Analysis. The contents are organised to suit, in particular, students of Engineering, Computer Science and Physics, all areas in which mathematical tools play a crucial role. The basic notions and methods concerning integral and differential calculus for multivariable functions, series of functions and ordinary differential equations are presented in a manner that elicits critical reading and prompts a hands-on approach to concrete applications. The pedagogical layout echoes the one used in the companion text Mathematical Analysis I. The book’s structure has a specifically-designed modular nature, which allows for great flexibility in the preparation of a lecture course on Mathematical Analysis. The style privileges clarity in the exposition and a linear progression through the theory. The material is organised on two levels. The first, reflected in this book, allows students to grasp the essential ideas, familiarise with the corresponding key techniques and find the proofs of the main results. The second level enables the strongly motivated reader to explore further into the subject, by studying also the material contained in the appendices. Definitions are enriched by many examples, which illustrate the properties discussed. A host of solved exercises complete the text, at least half of which guide the reader to the solution. This new edition features additional material with the aim of matching the widest range of educational choices for a second course of Mathematical Analysis.

A Concise Introduction to Pure Mathematics, Fourth Edition

Author: Martin Liebeck

Publisher: CRC Press

ISBN: 1498722938

Category: Mathematics

Page: 301

View: 8691

DOWNLOAD NOW »
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.

Real Analysis for the Undergraduate

With an Invitation to Functional Analysis

Author: Matthew A. Pons

Publisher: Springer Science & Business Media

ISBN: 1461496381

Category: Mathematics

Page: 409

View: 5014

DOWNLOAD NOW »
This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author’s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.

Calculus Problems

Author: Marco Baronti,Filippo De Mari,Robertus van der Putten,Irene Venturi

Publisher: Springer

ISBN: 3319154281

Category: Mathematics

Page: 366

View: 3521

DOWNLOAD NOW »
This book, intended as a practical working guide for calculus students, includes 450 exercises. It is designed for undergraduate students in Engineering, Mathematics, Physics, or any other field where rigorous calculus is needed, and will greatly benefit anyone seeking a problem-solving approach to calculus. Each chapter starts with a summary of the main definitions and results, which is followed by a selection of solved exercises accompanied by brief, illustrative comments. A selection of problems with indicated solutions rounds out each chapter. A final chapter explores problems that are not designed with a single issue in mind but instead call for the combination of a variety of techniques, rounding out the book’s coverage. Though the book’s primary focus is on functions of one real variable, basic ordinary differential equations (separation of variables, linear first order and constant coefficients ODEs) are also discussed. The material is taken from actual written tests that have been delivered at the Engineering School of the University of Genoa. Literally thousands of students have worked on these problems, ensuring their real-world applicability.

A Primer on PDEs

Models, Methods, Simulations

Author: Sandro Salsa,Federico Vegni,Anna Zaretti,Paolo Zunino

Publisher: Springer Science & Business Media

ISBN: 8847028620

Category: Mathematics

Page: 489

View: 5082

DOWNLOAD NOW »
This book is designed as an advanced undergraduate or a first-year graduate course for students from various disciplines like applied mathematics, physics, engineering. It has evolved while teaching courses on partial differential equations during the last decade at the Politecnico of Milan. The main purpose of these courses was twofold: on the one hand, to train the students to appreciate the interplay between theory and modelling in problems arising in the applied sciences and on the other hand to give them a solid background for numerical methods, such as finite differences and finite elements.

Financial Mathematics

Theory and Problems for Multi-period Models

Author: Andrea Pascucci,Wolfgang J. Runggaldier

Publisher: Springer Science & Business Media

ISBN: 9788847025387

Category: Mathematics

Page: 294

View: 4403

DOWNLOAD NOW »
With the Bologna Accords a bachelor-master-doctor curriculum has been introduced in various countries with the intention that students may enter the job market already at the bachelor level. Since financial Institutions provide non negligible job opportunities also for mathematicians, and scientists in general, it appeared to be appropriate to have a financial mathematics course already at the bachelor level in mathematics. Most mathematical techniques in use in financial mathematics are related to continuous time models and require thus notions from stochastic analysis that bachelor students do in general not possess. Basic notions and methodologies in use in financial mathematics can however be transmitted to students also without the technicalities from stochastic analysis by using discrete time (multi-period) models for which general notions from Probability suffice and these are generally familiar to students not only from science courses, but also from economics with quantitative curricula. There do not exists many textbooks for multi-period models and the present volume is intended to fill in this gap. It deals with the basic topics in financial mathematics and, for each topic, there is a theoretical section and a problem section. The latter includes a great variety of possible problems with complete solution.

Partial Differential Equations in Action

From Modelling to Theory

Author: Sandro Salsa

Publisher: Springer

ISBN: 3319150936

Category: Mathematics

Page: 701

View: 4939

DOWNLOAD NOW »
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

An Introduction to Mathematical Analysis

International Series of Monographs on Pure and Applied Mathematics

Author: Robert A. Rankin

Publisher: Elsevier

ISBN: 1483137309

Category: Mathematics

Page: 624

View: 2319

DOWNLOAD NOW »
An Introduction to Mathematical Analysis is an introductory text to mathematical analysis, with emphasis on functions of a single real variable. Topics covered include limits and continuity, differentiability, integration, and convergence of infinite series, along with double series and infinite products. This book is comprised of seven chapters and begins with an overview of fundamental ideas and assumptions relating to the field operations and the ordering of the real numbers, together with mathematical induction and upper and lower bounds of sets of real numbers. The following chapters deal with limits of real functions; differentiability and maxima, minima, and convexity; elementary properties of infinite series; and functions defined by power series. Integration is also considered, paying particular attention to the indefinite integral; interval functions and functions of bounded variation; the Riemann-Stieltjes integral; the Riemann integral; and area and curves. The final chapter is devoted to convergence and uniformity. This monograph is intended for mathematics students.

Spectral Theory and Quantum Mechanics

With an Introduction to the Algebraic Formulation

Author: Valter Moretti

Publisher: Springer Science & Business Media

ISBN: 8847028353

Category: Mathematics

Page: 728

View: 814

DOWNLOAD NOW »
This book pursues the accurate study of the mathematical foundations of Quantum Theories. It may be considered an introductory text on linear functional analysis with a focus on Hilbert spaces. Specific attention is given to spectral theory features that are relevant in physics. Having left the physical phenomenology in the background, it is the formal and logical aspects of the theory that are privileged. Another not lesser purpose is to collect in one place a number of useful rigorous statements on the mathematical structure of Quantum Mechanics, including some elementary, yet fundamental, results on the Algebraic Formulation of Quantum Theories. In the attempt to reach out to Master's or PhD students, both in physics and mathematics, the material is designed to be self-contained: it includes a summary of point-set topology and abstract measure theory, together with an appendix on differential geometry. The book should benefit established researchers to organise and present the profusion of advanced material disseminated in the literature. Most chapters are accompanied by exercises, many of which are solved explicitly.

Amazing and Aesthetic Aspects of Analysis

Author: Paul Loya

Publisher: Springer

ISBN: 1493967959

Category: Mathematics

Page: 722

View: 3064

DOWNLOAD NOW »
Lively prose and imaginative exercises draw the reader into this unique introductory real analysis textbook. Motivating the fundamental ideas and theorems that underpin real analysis with historical remarks and well-chosen quotes, the author shares his enthusiasm for the subject throughout. A student reading this book is invited not only to acquire proficiency in the fundamentals of analysis, but to develop an appreciation for abstraction and the language of its expression. In studying this book, students will encounter: the interconnections between set theory and mathematical statements and proofs; the fundamental axioms of the natural, integer, and real numbers; rigorous ε-N and ε-δ definitions; convergence and properties of an infinite series, product, or continued fraction; series, product, and continued fraction formulæ for the various elementary functions and constants. Instructors will appreciate this engaging perspective, showcasing the beauty of these fundamental results.

Partial Differential Equations in Action

From Modelling to Theory

Author: Sandro Salsa

Publisher: Springer

ISBN: 3319312383

Category: Mathematics

Page: 686

View: 550

DOWNLOAD NOW »
The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.The third edition contains a few text and formulas revisions and new exercises.

Real Analysis

Modern Techniques and Their Applications

Author: Gerald B. Folland

Publisher: John Wiley & Sons

ISBN: 1118626397

Category: Mathematics

Page: 416

View: 4787

DOWNLOAD NOW »
An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.

Logic: a Brief Course

Author: Daniele Mundici

Publisher: Springer Science & Business Media

ISBN: 9788847023611

Category: Mathematics

Page: 130

View: 2775

DOWNLOAD NOW »
This short book, geared towards undergraduate students of computer science and mathematics, is specifically designed for a first course in mathematical logic. A proof of Gödel's completeness theorem and its main consequences is given using Robinson's completeness theorem and Gödel's compactness theorem for propositional logic. The reader will familiarize himself with many basic ideas and artifacts of mathematical logic: a non-ambiguous syntax, logical equivalence and consequence relation, the Davis-Putnam procedure, Tarski semantics, Herbrand models, the axioms of identity, Skolem normal forms, nonstandard models and, interestingly enough, proofs and refutations viewed as graphic objects. The mathematical prerequisites are minimal: the book is accessible to anybody having some familiarity with proofs by induction. Many exercises on the relationship between natural language and formal proofs make the book also interesting to a wide range of students of philosophy and linguistics.

Solving Numerical PDEs: Problems, Applications, Exercises

Author: Luca Formaggia,Fausto Saleri,Alessandro Veneziani

Publisher: Springer Science & Business Media

ISBN: 8847024129

Category: Mathematics

Page: 434

View: 7294

DOWNLOAD NOW »
This book stems from the long standing teaching experience of the authors in the courses on Numerical Methods in Engineering and Numerical Methods for Partial Differential Equations given to undergraduate and graduate students of Politecnico di Milano (Italy), EPFL Lausanne (Switzerland), University of Bergamo (Italy) and Emory University (Atlanta, USA). It aims at introducing students to the numerical approximation of Partial Differential Equations (PDEs). One of the difficulties of this subject is to identify the right trade-off between theoretical concepts and their actual use in practice. With this collection of examples and exercises we try to address this issue by illustrating "academic" examples which focus on basic concepts of Numerical Analysis as well as problems derived from practical application which the student is encouraged to formalize in terms of PDEs, analyze and solve. The latter examples are derived from the experience of the authors in research project developed in collaboration with scientists of different fields (biology, medicine, etc.) and industry. We wanted this book to be useful both to readers more interested in the theoretical aspects and those more concerned with the numerical implementation.

Introduction to Measure Theory and Functional Analysis

Author: Piermarco Cannarsa,Teresa D'Aprile

Publisher: Springer

ISBN: 3319170198

Category: Mathematics

Page: 314

View: 4227

DOWNLOAD NOW »
This book introduces readers to theories that play a crucial role in modern mathematics, such as integration and functional analysis, employing a unifying approach that views these two subjects as being deeply intertwined. This feature is particularly evident in the broad range of problems examined, the solutions of which are often supported by generous hints. If the material is split into two courses, it can be supplemented by additional topics from the third part of the book, such as functions of bounded variation, absolutely continuous functions, and signed measures. This textbook addresses the needs of graduate students in mathematics, who will find the basic material they will need in their future careers, as well as those of researchers, who will appreciate the self-contained exposition which requires no other preliminaries than basic calculus and linear algebra.

Reduced Basis Methods for Partial Differential Equations

An Introduction

Author: Alfio Quarteroni,Andrea Manzoni,Federico Negri

Publisher: Springer

ISBN: 3319154311

Category: Mathematics

Page: 296

View: 9565

DOWNLOAD NOW »
This book provides a basic introduction to reduced basis (RB) methods for problems involving the repeated solution of partial differential equations (PDEs) arising from engineering and applied sciences, such as PDEs depending on several parameters and PDE-constrained optimization. The book presents a general mathematical formulation of RB methods, analyzes their fundamental theoretical properties, discusses the related algorithmic and implementation aspects, and highlights their built-in algebraic and geometric structures. More specifically, the authors discuss alternative strategies for constructing accurate RB spaces using greedy algorithms and proper orthogonal decomposition techniques, investigate their approximation properties and analyze offline-online decomposition strategies aimed at the reduction of computational complexity. Furthermore, they carry out both a priori and a posteriori error analysis. The whole mathematical presentation is made more stimulating by the use of representative examples of applicative interest in the context of both linear and nonlinear PDEs. Moreover, the inclusion of many pseudocodes allows the reader to easily implement the algorithms illustrated throughout the text. The book will be ideal for upper undergraduate students and, more generally, people interested in scientific computing. All these pseudocodes are in fact implemented in a MATLAB package that is freely available at https://github.com/redbkit

A textbook on Ordinary Differential Equations

Author: Shair Ahmad,Antonio Ambrosetti

Publisher: Springer

ISBN: 331902129X

Category: Mathematics

Page: 312

View: 5064

DOWNLOAD NOW »
The book is a primer of the theory of Ordinary Differential Equations. Each chapter is completed by a broad set of exercises; the reader will also find a set of solutions of selected exercises. The book contains many interesting examples as well (like the equations for the electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, and many other) which introduce the reader to some interesting aspects of the theory and its applications. The work is mainly addressed to students of Mathematics, Physics, Engineering, Statistics, Computer Sciences, with knowledge of Calculus and Linear Algebra, and contains more advanced topics for further developments, such as Laplace transform; Stability theory and existence of solutions to Boundary Value problems. A complete Solutions Manual, containing solutions to all the exercises published in the book, is available. Instructors who wish to adopt the book may request the manual by writing directly to one of the authors.

The Real and the Complex: A History of Analysis in the 19th Century

Author: Jeremy Gray

Publisher: Springer

ISBN: 3319237152

Category: Mathematics

Page: 350

View: 5615

DOWNLOAD NOW »
This book contains a history of real and complex analysis in the nineteenth century, from the work of Lagrange and Fourier to the origins of set theory and the modern foundations of analysis. It studies the works of many contributors including Gauss, Cauchy, Riemann, and Weierstrass. This book is unique owing to the treatment of real and complex analysis as overlapping, inter-related subjects, in keeping with how they were seen at the time. It is suitable as a course in the history of mathematics for students who have studied an introductory course in analysis, and will enrich any course in undergraduate real or complex analysis.

Introduction to Real Analysis, 4th Edition

Author: Robert G. Bartle,Donald R. Sherbert

Publisher: Wiley Global Education

ISBN: 1118135865

Category: Mathematics

Page: 402

View: 5536

DOWNLOAD NOW »
This text provides the fundamental concepts and techniques of real analysis for students in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations, and extend ideas to a new context. Like the first three editions, this edition maintains the same spirit and user-friendly approach with additional examples and expansion on Logical Operations and Set Theory. There is also content revision in the following areas: Introducing point-set topology before discussing continuity, including a more thorough discussion of limsup and limimf, covering series directly following sequences, adding coverage of Lebesgue Integral and the construction of the reals, and drawing student attention to possible applications wherever possible.