Matrix Computations

Author: Gene H. Golub,Charles F. Van Loan

Publisher: JHU Press

ISBN: 1421407949

Category: Mathematics

Page: 756

View: 2610

DOWNLOAD NOW »
The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this book to be an indispensible tool. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on • fast transforms• parallel LU• discrete Poisson solvers• pseudospectra• structured linear equation problems• structured eigenvalue problems• large-scale SVD methods• polynomial eigenvalue problems Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature—everything needed to become a matrix-savvy developer of numerical methods and software.

Matrix Computations

Author: Gene H. Golub,Charles F. Van Loan

Publisher: JHU Press

ISBN: 1421408597

Category: Mathematics

Page: 784

View: 5239

DOWNLOAD NOW »
The fourth edition of Gene H. Golub and Charles F. Van Loan's classic is an essential reference for computational scientists and engineers in addition to researchers in the numerical linear algebra community. Anyone whose work requires the solution to a matrix problem and an appreciation of its mathematical properties will find this text useful and engaging. This revision is a cover-to-cover expansion and renovation of the third edition. It now includes an introduction to tensor computations and brand new sections on • fast transforms• parallel LU• discrete Poisson solvers• pseudospectra• structured linear equation problems• structured eigenvalue problems• large-scale SVD methods• polynomial eigenvalue problems Matrix Computations is packed with challenging problems, insightful derivations, and pointers to the literature—everything needed to become a matrix-savvy developer of numerical methods and software.

Matrix Computations

Author: Gene H. Golub,Charles F. Van Loan

Publisher: JHU Press

ISBN: 9780801854149

Category: Mathematics

Page: 694

View: 4208

DOWNLOAD NOW »
"An invaluable reference book that should be in every university library." -- Image: Bulletin of the International Linear Algebra Society

Numerical Methods in Matrix Computations

Author: Åke Björck

Publisher: Springer

ISBN: 3319050893

Category: Mathematics

Page: 800

View: 2175

DOWNLOAD NOW »
Matrix algorithms are at the core of scientific computing and are indispensable tools in most applications in engineering. This book offers a comprehensive and up-to-date treatment of modern methods in matrix computation. It uses a unified approach to direct and iterative methods for linear systems, least squares and eigenvalue problems. A thorough analysis of the stability, accuracy, and complexity of the treated methods is given. Numerical Methods in Matrix Computations is suitable for use in courses on scientific computing and applied technical areas at advanced undergraduate and graduate level. A large bibliography is provided, which includes both historical and review papers as well as recent research papers. This makes the book useful also as a reference and guide to further study and research work.

Applied Numerical Linear Algebra

Author: James W. Demmel

Publisher: SIAM

ISBN: 0898713897

Category: Mathematics

Page: 419

View: 5813

DOWNLOAD NOW »
This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.

Numerical Linear Algebra

Author: Lloyd N. Trefethen,David Bau, III

Publisher: SIAM

ISBN: 9780898719574

Category: Algebras, Linear

Page: 361

View: 8615

DOWNLOAD NOW »
A concise, insightful, and elegant introduction to the field of numerical linear algebra. Designed for use as a stand-alone textbook in a one-semester, graduate-level course in the topic, it has already been class-tested by MIT and Cornell graduate students from all fields of mathematics, engineering, and the physical sciences. The authors' clear, inviting style and evident love of the field, along with their eloquent presentation of the most fundamental ideas in numerical linear algebra, make it popular with teachers and students alike.

Fundamentals of matrix computations

Author: David S. Watkins

Publisher: John Wiley & Sons Inc

ISBN: 9780471614142

Category: Mathematics

Page: 449

View: 7965

DOWNLOAD NOW »
With in-depth discussions of such other topics as modern componentwise error analysis, reorthogonalization, and rank-one updates of the QR decomposition, Fundamentals of Matrix Computations, Second Edition will prove to be a versatile companion to novice and practicing mathematicians who seek mastery of matrix computation.

Matrix Operations for Engineers and Scientists

An Essential Guide in Linear Algebra

Author: Alan Jeffrey

Publisher: Springer Science & Business Media

ISBN: 9789048192748

Category: Science

Page: 278

View: 5959

DOWNLOAD NOW »
Engineers and scientists need to have an introduction to the basics of linear algebra in a context they understand. Computer algebra systems make the manipulation of matrices and the determination of their properties a simple matter, and in practical applications such software is often essential. However, using this tool when learning about matrices, without first gaining a proper understanding of the underlying theory, limits the ability to use matrices and to apply them to new problems. This book explains matrices in the detail required by engineering or science students, and it discusses linear systems of ordinary differential equations. These students require a straightforward introduction to linear algebra illustrated by applications to which they can relate. It caters of the needs of undergraduate engineers in all disciplines, and provides considerable detail where it is likely to be helpful. According to the author the best way to understand the theory of matrices is by working simple exercises designed to emphasize the theory, that at the same time avoid distractions caused by unnecessary numerical calculations. Hence, examples and exercises in this book have been constructed in such a way that wherever calculations are necessary they are straightforward. For example, when a characteristic equation occurs, its roots (the eigenvalues of a matrix) can be found by inspection. The author of this book is Alan Jeffrey, Emeritus Professor of mathematics at the University of Newcastle upon Tyne. He has given courses on engineering mathematics at UK and US Universities.

Accuracy and Stability of Numerical Algorithms

Second Edition

Author: Nicholas J. Higham

Publisher: SIAM

ISBN: 9780898718027

Category: Computer algorithms

Page: 680

View: 8163

DOWNLOAD NOW »
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.

Matrix Theory: A Second Course

Author: James M. Ortega

Publisher: Springer Science & Business Media

ISBN: 1489904719

Category: Mathematics

Page: 262

View: 6577

DOWNLOAD NOW »
Linear algebra and matrix theory are essentially synonymous terms for an area of mathematics that has become one of the most useful and pervasive tools in a wide range of disciplines. It is also a subject of great mathematical beauty. In consequence of both of these facts, linear algebra has increasingly been brought into lower levels of the curriculum, either in conjunction with the calculus or separate from it but at the same level. A large and still growing number of textbooks has been written to satisfy this need, aimed at students at the junior, sophomore, or even freshman levels. Thus, most students now obtaining a bachelor's degree in the sciences or engineering have had some exposure to linear algebra. But rarely, even when solid courses are taken at the junior or senior levels, do these students have an adequate working knowledge of the subject to be useful in graduate work or in research and development activities in government and industry. In particular, most elementary courses stop at the point of canonical forms, so that while the student may have "seen" the Jordan and other canonical forms, there is usually little appreciation of their usefulness. And there is almost never time in the elementary courses to deal with more specialized topics like nonnegative matrices, inertia theorems, and so on. In consequence, many graduate courses in mathematics, applied mathe matics, or applications develop certain parts of matrix theory as needed.

The Total Least Squares Problem

Computational Aspects and Analysis

Author: Sabine Van Huffel,Joos Vandewalle

Publisher: SIAM

ISBN: 0898712750

Category: Mathematics

Page: 300

View: 3279

DOWNLOAD NOW »
This is the first book devoted entirely to total least squares. The authors give a unified presentation of the TLS problem. A description of its basic principles are given, the various algebraic, statistical and sensitivity properties of the problem are discussed, and generalizations are presented. Applications are surveyed to facilitate uses in an even wider range of applications. Whenever possible, comparison is made with the well-known least squares methods. A basic knowledge of numerical linear algebra, matrix computations, and some notion of elementary statistics is required of the reader; however, some background material is included to make the book reasonably self-contained.

The Symmetric Eigenvalue Problem

Author: Beresford N. Parlett

Publisher: SIAM

ISBN: 9781611971163

Category: Algebras, Linear

Page: 398

View: 8195

DOWNLOAD NOW »
According to Parlett, "Vibrations are everywhere, and so too are the eigenvalues associated with them. As mathematical models invade more and more disciplines, we can anticipate a demand for eigenvalue calculations in an ever richer variety of contexts." Anyone who performs these calculations will welcome the reprinting of Parlett's book (originally published in 1980). In this unabridged, amended version, Parlett covers aspects of the problem that are not easily found elsewhere. The chapter titles convey the scope of the material succinctly. The aim of the book is to present mathematical knowledge that is needed in order to understand the art of computing eigenvalues of real symmetric matrices, either all of them or only a few. The author explains why the selected information really matters and he is not shy about making judgments. The commentary is lively but the proofs are terse. The first nine chapters are based on a matrix on which it is possible to make similarity transformations explicitly. The only source of error is inexact arithmetic. The last five chapters turn to large sparse matrices and the task of making approximations and judging them.

Numerical Methods of Statistics

Author: John F. Monahan

Publisher: Cambridge University Press

ISBN: 1139498002

Category: Computers

Page: N.A

View: 3311

DOWNLOAD NOW »
This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder–Mead search algorithm.

Matrix Algorithms

Volume 1: Basic Decompositions

Author: G. W. Stewart

Publisher: SIAM

ISBN: 0898714141

Category: Mathematics

Page: 458

View: 6860

DOWNLOAD NOW »
This volume is the first in a self-contained five-volume series devoted to matrix algorithms. It focuses on the computation of matrix decompositions--that is, the factorization of matrices into products of similar ones. The first two chapters provide the required background from mathematics and computer science needed to work effectively in matrix computations. The remaining chapters are devoted to the LU and QR decompositions--their computation and applications. The singular value decomposition is also treated, although algorithms for its computation will appear in the second volume of the series. The present volume contains 65 algorithms formally presented in pseudocode. Other volumes in the series will treat eigensystems, iterative methods, sparse matrices, and structured problems. The series is aimed at the nonspecialist who needs more than black-box proficiency with matrix computations. To give the series focus, the emphasis is on algorithms, their derivation, and their analysis. The reader is assumed to have a knowledge of elementary analysis and linear algebra and a reasonable amount of programming experience, typically that of the beginning graduate engineer or the undergraduate in an honors program. Strictly speaking, the individual volumes are not textbooks, although they are intended to teach, the guiding principle being that if something is worth explaining, it is worth explaining fully. This has necessarily restricted the scope of the series, but the selection of topics should give the reader a sound basis for further study.

Numerical Methods for Scientists and Engineers

Author: Richard Hamming

Publisher: Courier Corporation

ISBN: 0486134822

Category: Mathematics

Page: 752

View: 5548

DOWNLOAD NOW »
This inexpensive paperback edition of a groundbreaking text stresses frequency approach in coverage of algorithms, polynomial approximation, Fourier approximation, exponential approximation, and other topics. Revised and enlarged 2nd edition.

Topics in Matrix Analysis

Author: Roger A. Horn,Charles R. Johnson

Publisher: Cambridge University Press

ISBN: 9780521467131

Category: Mathematics

Page: 607

View: 7711

DOWNLOAD NOW »
This book treats several topics in matrix theory not included in its predecessor volume, Matrix Analysis.

Matrix Analysis and Applications

Author: Xian-Da Zhang

Publisher: Cambridge University Press

ISBN: 1108417418

Category: Mathematics

Page: N.A

View: 507

DOWNLOAD NOW »
The theory, methods and applications of matrix analysis are presented here in a novel theoretical framework.

Scalar, Vector, and Matrix Mathematics

Theory, Facts, and Formulas

Author: Dennis S. Bernstein

Publisher: Princeton University Press

ISBN: 1400888255

Category: Mathematics

Page: 1600

View: 3581

DOWNLOAD NOW »
The essential reference book on matrices—now fully updated and expanded, with new material on scalar and vector mathematics Since its initial publication, this book has become the essential reference for users of matrices in all branches of engineering, science, and applied mathematics. In this revised and expanded edition, Dennis Bernstein combines extensive material on scalar and vector mathematics with the latest results in matrix theory to make this the most comprehensive, current, and easy-to-use book on the subject. Each chapter describes relevant theoretical background followed by specialized results. Hundreds of identities, inequalities, and facts are stated clearly and rigorously, with cross-references, citations to the literature, and helpful comments. Beginning with preliminaries on sets, logic, relations, and functions, this unique compendium covers all the major topics in matrix theory, such as transformations and decompositions, polynomial matrices, generalized inverses, and norms. Additional topics include graphs, groups, convex functions, polynomials, and linear systems. The book also features a wealth of new material on scalar inequalities, geometry, combinatorics, series, integrals, and more. Now more comprehensive than ever, Scalar, Vector, and Matrix Mathematics includes a detailed list of symbols, a summary of notation and conventions, an extensive bibliography and author index with page references, and an exhaustive subject index. Fully updated and expanded with new material on scalar and vector mathematics Covers the latest results in matrix theory Provides a list of symbols and a summary of conventions for easy and precise use Includes an extensive bibliography with back-referencing plus an author index

Advanced Linear Algebra

Author: Steven Roman

Publisher: Springer Science & Business Media

ISBN: 9780387274744

Category: Mathematics

Page: 486

View: 8200

DOWNLOAD NOW »
Covers a notably broad range of topics, including some topics not generally found in linear algebra books Contains a discussion of the basics of linear algebra