Metaheuristics

From Design to Implementation

Author: El-Ghazali Talbi

Publisher: John Wiley & Sons

ISBN: 9780470496909

Category: Computers

Page: 500

View: 8303

DOWNLOAD NOW »
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

Metaheuristics

From Design to Implementation

Author: El-Ghazali Talbi

Publisher: Wiley

ISBN: 0470496908

Category: Computers

Page: 500

View: 380

DOWNLOAD NOW »
A unified view of metaheuristics This book provides a complete background on metaheuristics and shows readers how to design and implement efficient algorithms to solve complex optimization problems across a diverse range of applications, from networking and bioinformatics to engineering design, routing, and scheduling. It presents the main design questions for all families of metaheuristics and clearly illustrates how to implement the algorithms under a software framework to reuse both the design and code. Throughout the book, the key search components of metaheuristics are considered as a toolbox for: Designing efficient metaheuristics (e.g. local search, tabu search, simulated annealing, evolutionary algorithms, particle swarm optimization, scatter search, ant colonies, bee colonies, artificial immune systems) for optimization problems Designing efficient metaheuristics for multi-objective optimization problems Designing hybrid, parallel, and distributed metaheuristics Implementing metaheuristics on sequential and parallel machines Using many case studies and treating design and implementation independently, this book gives readers the skills necessary to solve large-scale optimization problems quickly and efficiently. It is a valuable reference for practicing engineers and researchers from diverse areas dealing with optimization or machine learning; and graduate students in computer science, operations research, control, engineering, business and management, and applied mathematics.

Hybrid Metaheuristics

10th International Workshop, HM 2016, Plymouth, UK, June 8-10, 2016, Proceedings

Author: Maria J. Blesa,Christian Blum,Angelo Cangelosi,Vincenzo Cutello,ALESSANDRO DI NUOVO,Mario Pavone,El-Ghazali Talbi

Publisher: Springer

ISBN: 3319396366

Category: Computers

Page: 223

View: 1484

DOWNLOAD NOW »
This book constitutes the refereed proceedings of the 10th International Workshop on Hybrid Metaheuristics, HM 2016, held in Plymouth, UK, in June 2016. The 15 revised full papers presented were carefully reviewed and selected from 43 submissions. The selected papers are of interest for all the researchers working on integrating metaheuristics with other areas for solving both optimization and constraint satisfaction problems. They represent as well a sample of current research demonstrating how metaheuristics can be integrated with integer linear programming and other operational research techniques for tackling difficult and relevant problems.

Metaheuristics in Water, Geotechnical and Transport Engineering

Author: Xin-She Yang,Amir Hossein Gandomi,Siamak Talatahari,Amir Hossein Alavi

Publisher: Newnes

ISBN: 0123983177

Category: Technology & Engineering

Page: 496

View: 5001

DOWNLOAD NOW »
Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are often large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in water, geotechnical and transport engineering offering practical case studies as examples to demonstrate real world applications. Topics cover a range of areas within engineering, including reviews of optimization algorithms, artificial intelligence, cuckoo search, genetic programming, neural networks, multivariate adaptive regression, swarm intelligence, genetic algorithms, ant colony optimization, evolutionary multiobjective optimization with diverse applications in engineering such as behavior of materials, geotechnical design, flood control, water distribution and signal networks. This book can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheursitics, optimization in civil engineering and computational intelligence. Provides detailed descriptions of all major metaheuristic algorithms with a focus on practical implementation Develops new hybrid and advanced methods suitable for civil engineering problems at all levels Appropriate for researchers and advanced students to help to develop their work

Metaheuristic Applications in Structures and Infrastructures

Author: Amir Hossein Gandomi,Xin-She Yang,Siamak Talatahari,Amir Hossein Alavi

Publisher: Newnes

ISBN: 0123983797

Category: Technology & Engineering

Page: 568

View: 4823

DOWNLOAD NOW »
Due to an ever-decreasing supply in raw materials and stringent constraints on conventional energy sources, demand for lightweight, efficient and low-cost structures has become crucially important in modern engineering design. This requires engineers to search for optimal and robust design options to address design problems that are commonly large in scale and highly nonlinear, making finding solutions challenging. In the past two decades, metaheuristic algorithms have shown promising power, efficiency and versatility in solving these difficult optimization problems. This book examines the latest developments of metaheuristics and their applications in structural engineering, construction engineering and earthquake engineering, offering practical case studies as examples to demonstrate real-world applications. Topics cover a range of areas within engineering, including big bang-big crunch approach, genetic algorithms, genetic programming, harmony search, swarm intelligence and some other metaheuristic methods. Case studies include structural identification, vibration analysis and control, topology optimization, transport infrastructure design, design of reinforced concrete, performance-based design of structures and smart pavement management. With its wide range of everyday problems and solutions, Metaheursitic Applications in Structures and Infrastructures can serve as a supplementary text for design courses and computation in engineering as well as a reference for researchers and engineers in metaheuristics, optimization in civil engineering and computational intelligence. Review of the latest development of metaheuristics in engineering. Detailed algorithm descriptions with focus on practical implementation. Uses practical case studies as examples and applications.

Advances in Metaheuristics

Applications in Engineering Systems

Author: Timothy Ganesan,Pandian Vasant,Irraivan Elamvazuthi

Publisher: CRC Press

ISBN: 1315297639

Category: Business & Economics

Page: 233

View: 3263

DOWNLOAD NOW »
Advances in Metaheuristics: Applications in Engineering Systems provides details on current approaches utilized in engineering optimization. It gives a comprehensive background on metaheuristic applications, focusing on main engineering sectors such as energy, process, and materials. It discusses topics such as algorithmic enhancements and performance measurement approaches, and provides insights into the implementation of metaheuristic strategies to multi-objective optimization problems. With this book, readers can learn to solve real-world engineering optimization problems effectively using the appropriate techniques from emerging fields including evolutionary and swarm intelligence, mathematical programming, and multi-objective optimization. The ten chapters of this book are divided into three parts. The first part discusses three industrial applications in the energy sector. The second focusses on process optimization and considers three engineering applications: optimization of a three-phase separator, process plant, and a pre-treatment process. The third and final part of this book covers industrial applications in material engineering, with a particular focus on sand mould-systems. It also includes discussions on the potential improvement of algorithmic characteristics via strategic algorithmic enhancements. This book helps fill the existing gap in literature on the implementation of metaheuristics in engineering applications and real-world engineering systems. It will be an important resource for engineers and decision-makers selecting and implementing metaheuristics to solve specific engineering problems.

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

Author: Omid Bozorg-Haddad,Mohammad Solgi,Hugo A. Loáiciga

Publisher: John Wiley & Sons

ISBN: 1119386993

Category: Mathematics

Page: 304

View: 3729

DOWNLOAD NOW »
Overview of optimization -- Introduction to meta-heuristic and evolutionary algorithms -- Pattern search (PS) -- Genetic algorithm (GA) -- Simulated annealing (SA) -- Tabu search (TS) -- Ant colony optimization (ACO) -- Particle swarm optimization (PSO) -- Differential evolution (DE) -- Harmony search (HS) -- Shuffled frog-leaping algorithm (SFLA) -- Honey-bee mating optimization (HBMO) -- Invasive weed optimization (IWO) -- Central force optimization (CFO) -- Biogeography-based optimization (BBO) -- Firefly algorithm (FA) -- Gravity search algorithm (GSA) -- Bat algorithm (BA) -- Plant propagation algorithm (PPA) -- Water cycle algorithm (WCA) -- Symbiotic organisms search (SOS) -- Comprehensive evolutionary algorithm (CEA)

Hybrid Metaheuristics

Powerful Tools for Optimization

Author: Christian Blum,Günther R. Raidl

Publisher: Springer

ISBN: 3319308831

Category: Computers

Page: 157

View: 7907

DOWNLOAD NOW »
This book explains the most prominent and some promising new, general techniques that combine metaheuristics with other optimization methods. A first introductory chapter reviews the basic principles of local search, prominent metaheuristics, and tree search, dynamic programming, mixed integer linear programming, and constraint programming for combinatorial optimization purposes. The chapters that follow present five generally applicable hybridization strategies, with exemplary case studies on selected problems: incomplete solution representations and decoders; problem instance reduction; large neighborhood search; parallel non-independent construction of solutions within metaheuristics; and hybridization based on complete solution archives. The authors are among the leading researchers in the hybridization of metaheuristics with other techniques for optimization, and their work reflects the broad shift to problem-oriented rather than algorithm-oriented approaches, enabling faster and more effective implementation in real-life applications. This hybridization is not restricted to different variants of metaheuristics but includes, for example, the combination of mathematical programming, dynamic programming, or constraint programming with metaheuristics, reflecting cross-fertilization in fields such as optimization, algorithmics, mathematical modeling, operations research, statistics, and simulation. The book is a valuable introduction and reference for researchers and graduate students in these domains.

Nature-inspired Metaheuristic Algorithms

Author: Xin-She Yang

Publisher: Luniver Press

ISBN: 1905986289

Category: Computers

Page: 148

View: 3206

DOWNLOAD NOW »
Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.

Engineering Optimization

An Introduction with Metaheuristic Applications

Author: Xin-She Yang

Publisher: John Wiley & Sons

ISBN: 9780470640418

Category: Mathematics

Page: 384

View: 1694

DOWNLOAD NOW »
An accessible introduction to metaheuristics and optimization, featuring powerful and modern algorithms for application across engineering and the sciences From engineering and computer science to economics and management science, optimization is a core component for problem solving. Highlighting the latest developments that have evolved in recent years, Engineering Optimization: An Introduction with Metaheuristic Applications outlines popular metaheuristic algorithms and equips readers with the skills needed to apply these techniques to their own optimization problems. With insightful examples from various fields of study, the author highlights key concepts and techniques for the successful application of commonly-used metaheuristc algorithms, including simulated annealing, particle swarm optimization, harmony search, and genetic algorithms. The author introduces all major metaheuristic algorithms and their applications in optimization through a presentation that is organized into three succinct parts: Foundations of Optimization and Algorithms provides a brief introduction to the underlying nature of optimization and the common approaches to optimization problems, random number generation, the Monte Carlo method, and the Markov chain Monte Carlo method Metaheuristic Algorithms presents common metaheuristic algorithms in detail, including genetic algorithms, simulated annealing, ant algorithms, bee algorithms, particle swarm optimization, firefly algorithms, and harmony search Applications outlines a wide range of applications that use metaheuristic algorithms to solve challenging optimization problems with detailed implementation while also introducing various modifications used for multi-objective optimization Throughout the book, the author presents worked-out examples and real-world applications that illustrate the modern relevance of the topic. A detailed appendix features important and popular algorithms using MATLAB® and Octave software packages, and a related FTP site houses MATLAB code and programs for easy implementation of the discussed techniques. In addition, references to the current literature enable readers to investigate individual algorithms and methods in greater detail. Engineering Optimization: An Introduction with Metaheuristic Applications is an excellent book for courses on optimization and computer simulation at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners working in the fields of mathematics, engineering, computer science, operations research, and management science who use metaheuristic algorithms to solve problems in their everyday work.

Modeling, Analysis, and Applications in Metaheuristic Computing: Advancements and Trends

Advancements and Trends

Author: Yin, Peng-Yeng

Publisher: IGI Global

ISBN: 1466602716

Category: Computers

Page: 445

View: 6459

DOWNLOAD NOW »
"This book is a collection of the latest developments, models, and applications within the transdisciplinary fields related to metaheuristic computing, providing readers with insight into a wide range of topics such as genetic algorithms, differential evolution, and ant colony optimization"--Provided by publisher.

Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance

Author: Vasant, Pandian M.

Publisher: IGI Global

ISBN: 1466620870

Category: Computers

Page: 734

View: 984

DOWNLOAD NOW »
Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.

Design of Modern Heuristics

Principles and Application

Author: Franz Rothlauf

Publisher: Springer Science & Business Media

ISBN: 3540729623

Category: Computers

Page: 267

View: 5353

DOWNLOAD NOW »
Most textbooks on modern heuristics provide the reader with detailed descriptions of the functionality of single examples like genetic algorithms, genetic programming, tabu search, simulated annealing, and others, but fail to teach the underlying concepts behind these different approaches. The author takes a different approach in this textbook by focusing on the users' needs and answering three fundamental questions: First, he tells us which problems modern heuristics are expected to perform well on, and which should be left to traditional optimization methods. Second, he teaches us to systematically design the "right" modern heuristic for a particular problem by providing a coherent view on design elements and working principles. Third, he shows how we can make use of problem-specific knowledge for the design of efficient and effective modern heuristics that solve not only small toy problems but also perform well on large real-world problems. This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use. This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use. This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use.

Recent Developments in Metaheuristics

Author: Lionel Amodeo,El-Ghazali Talbi,Farouk Yalaoui

Publisher: Springer

ISBN: 3319582534

Category: Business & Economics

Page: 496

View: 3655

DOWNLOAD NOW »
This book highlights state-of-the-art developments in metaheuristics research. It examines all aspects of metaheuristic research including new algorithmic developments, applications, new research challenges, theoretical developments, implementation issues, in-depth experimental studies. The book is divided into two sections. Part I is focused on new optimization and modeling techniques based on metaheuristics. The chapters in this section cover topics from multi-objective problems with fuzzy data with triangular-valued objective functions, to hyper-heuristics optimization methodology, designing genetic algorithms, and also the cuckoo search algorithm. The techniques described help to enhance the usability and increase the potential of metaheuristic algorithms. Part II showcases advanced metaheuristic approaches to solve real-life applications issues. This includes an examination of scheduling, the vehicle routing problem, multimedia sensor network, supplier selection, bin packing, objects tracking, and radio frequency identification. In the fields covered in the chapters are of high-impact applications of metaheuristics. The chapters offer innovative applications of metaheuristics that have a potential of widening research frontiers. Altogether, this book offers a comprehensive look at how researchers are currently using metaheuristics in different domains of design and application.

Parallel Metaheuristics

A New Class of Algorithms

Author: Enrique Alba

Publisher: John Wiley & Sons

ISBN: 0471739375

Category: Technology & Engineering

Page: 565

View: 4417

DOWNLOAD NOW »
Solving complex optimization problems with parallel metaheuristics Parallel Metaheuristics brings together an international group of experts in parallelism and metaheuristics to provide a much-needed synthesis of these two fields. Readers discover how metaheuristic techniques can provide useful and practical solutions for a wide range of problems and application domains, with an emphasis on the fields of telecommunications and bioinformatics. This volume fills a long-existing gap, allowing researchers and practitioners to develop efficient metaheuristic algorithms to find solutions. The book is divided into three parts: * Part One: Introduction to Metaheuristics and Parallelism, including an Introduction to Metaheuristic Techniques, Measuring the Performance of Parallel Metaheuristics, New Technologies in Parallelism, and a head-to-head discussion on Metaheuristics and Parallelism * Part Two: Parallel Metaheuristic Models, including Parallel Genetic Algorithms, Parallel Genetic Programming, Parallel Evolution Strategies, Parallel Ant Colony Algorithms, Parallel Estimation of Distribution Algorithms, Parallel Scatter Search, Parallel Variable Neighborhood Search, Parallel Simulated Annealing, Parallel Tabu Search, Parallel GRASP, Parallel Hybrid Metaheuristics, Parallel Multi-Objective Optimization, and Parallel Heterogeneous Metaheuristics * Part Three: Theory and Applications, including Theory of Parallel Genetic Algorithms, Parallel Metaheuristics Applications, Parallel Metaheuristics in Telecommunications, and a final chapter on Bioinformatics and Parallel Metaheuristics Each self-contained chapter begins with clear overviews and introductions that bring the reader up to speed, describes basic techniques, and ends with a reference list for further study. Packed with numerous tables and figures to illustrate the complex theory and processes, this comprehensive volume also includes numerous practical real-world optimization problems and their solutions. This is essential reading for students and researchers in computer science, mathematics, and engineering who deal with parallelism, metaheuristics, and optimization in general.

Clever Algorithms

Nature-inspired Programming Recipes

Author: Jason Brownlee

Publisher: Jason Brownlee

ISBN: 1446785068

Category: Computers

Page: 438

View: 1092

DOWNLOAD NOW »
This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.

Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches

Author: Yin, Peng-Yeng

Publisher: IGI Global

ISBN: 146662146X

Category: Computers

Page: 375

View: 6144

DOWNLOAD NOW »
Developments in metaheuristics continue to advance computation beyond its traditional methods. With groundwork built on multidisciplinary research findings; metaheuristics, algorithms, and optimization approaches uses memory manipulations in order to take full advantage of strategic level problem solving. Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches provides insight on the latest advances and analysis of technologies in metaheuristics computing. Offering widespread coverage on topics such as genetic algorithms, differential evolution, and ant colony optimization, this book aims to be a forum researchers, practitioners, and students who wish to learn and apply metaheuristic computing.

Metaheuristics for Hard Optimization

Methods and Case Studies

Author: Johann Dréo,Alain Pétrowski,Patrick Siarry,Eric Taillard

Publisher: Springer Science & Business Media

ISBN: 3540309667

Category: Mathematics

Page: 372

View: 7225

DOWNLOAD NOW »
Contains case studies from engineering and operations research Includes commented literature for each chapter

Swarm Intelligence and Bio-Inspired Computation

Theory and Applications

Author: Xin-She Yang,Zhihua Cui,Renbin Xiao,Amir Hossein Gandomi,Mehmet Karamanoglu

Publisher: Newnes

ISBN: 0124051774

Category: Computers

Page: 450

View: 1646

DOWNLOAD NOW »
Swarm Intelligence and bio-inspired computation have become increasing popular in the last two decades. Bio-inspired algorithms such as ant colony algorithms, bat algorithms, bee algorithms, firefly algorithms, cuckoo search and particle swarm optimization have been applied in almost every area of science and engineering with a dramatic increase of number of relevant publications. This book reviews the latest developments in swarm intelligence and bio-inspired computation from both the theory and application side, providing a complete resource that analyzes and discusses the latest and future trends in research directions. It can help new researchers to carry out timely research and inspire readers to develop new algorithms. With its impressive breadth and depth, this book will be useful for advanced undergraduate students, PhD students and lecturers in computer science, engineering and science as well as researchers and engineers. Focuses on the introduction and analysis of key algorithms Includes case studies for real-world applications Contains a balance of theory and applications, so readers who are interested in either algorithm or applications will all benefit from this timely book.