Modern Geometries

Non-Euclidean, Projective, and Discrete

Author: Michael Henle

Publisher: Pearson College Division

ISBN: 9780130323132

Category: Mathematics

Page: 389

View: 8149

DOWNLOAD NOW »
Engaging, accessible, and extensively illustrated, this brief, but solid introduction to modern geometry describes geometry as it is understood and used by contemporary mathematicians and theoretical scientists. Basically non-Euclidean in approach, it relates geometry to familiar ideas from analytic geometry, staying firmly in the Cartesian plane. It uses the principle geometric concept of congruence or geometric transformation--introducing and using the Erlanger Program explicitly throughout. It features significant modern applications of geometry--e.g., the geometry of relativity, symmetry, art and crystallography, finite geometry and computation. Covers a full range of topics from plane geometry, projective geometry, solid geometry, discrete geometry, and axiom systems. For anyone interested in an introduction to geometry used by contemporary mathematicians and theoretical scientists.

Geometries

Author: Alekseĭ Bronislavovich Sosinskiĭ

Publisher: American Mathematical Soc.

ISBN: 082187571X

Category: Mathematics

Page: 301

View: 5928

DOWNLOAD NOW »
The book is an innovative modern exposition of geometry, or rather, of geometries; it is the first textbook in which Felix Klein's Erlangen Program (the action of transformation groups) is systematically used as the basis for defining various geometries. The course of study presented is dedicated to the proposition that all geometries are created equal--although some, of course, remain more equal than others. The author concentrates on several of the more distinguished and beautiful ones, which include what he terms ``toy geometries'', the geometries of Platonic bodies, discrete geometries, and classical continuous geometries. The text is based on first-year semester course lectures delivered at the Independent University of Moscow in 2003 and 2006. It is by no means a formal algebraic or analytic treatment of geometric topics, but rather, a highly visual exposition containing upwards of 200 illustrations. The reader is expected to possess a familiarity with elementary Euclidean geometry, albeit those lacking this knowledge may refer to a compendium in Chapter 0. Per the author's predilection, the book contains very little regarding the axiomatic approach to geometry (save for a single chapter on the history of non-Euclidean geometry), but two Appendices provide a detailed treatment of Euclid's and Hilbert's axiomatics. Perhaps the most important aspect of this course is the problems, which appear at the end of each chapter and are supplemented with answers at the conclusion of the text. By analyzing and solving these problems, the reader will become capable of thinking and working geometrically, much more so than by simply learning the theory. Ultimately, the author makes the distinction between concrete mathematical objects called ``geometries'' and the singular ``geometry'', which he understands as a way of thinking about mathematics. Although the book does not address branches of mathematics and mathematical physics such as Riemannian and Kahler manifolds or, say, differentiable manifolds and conformal field theories, the ideology of category language and transformation groups on which the book is based prepares the reader for the study of, and eventually, research in these important and rapidly developing areas of contemporary mathematics.

Perspectives on Projective Geometry

A Guided Tour Through Real and Complex Geometry

Author: Jürgen Richter-Gebert

Publisher: Springer Science & Business Media

ISBN: 9783642172861

Category: Mathematics

Page: 571

View: 669

DOWNLOAD NOW »
Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

A Course in Modern Geometries

Author: Judith Cederberg

Publisher: Springer Science & Business Media

ISBN: 1475738315

Category: Mathematics

Page: 233

View: 8293

DOWNLOAD NOW »
A Course in Modern Geometries is designed for a junior-senior level course for mathematics majors, including those who plan to teach in secondary school. Chapter 1 presents several finite geometries in an axiomatic framework. Chapter 2 introduces Euclid's geometry and the basic ideas of non-Euclidean geometry. The synthetic approach of Chapters 1 - 2 is followed by the analytic treatment of transformations of the Euclidean plane in Chapter 3. Chapter 4 presents plane projective geometry both synthetically and analytically. The extensive use of matrix representations of groups of transformations in Chapters 3 - 4 reinforces ideas from linear algebra and serves as excellent preparation for a course in abstract algebra. Each chapter includes a list of suggested sources for applications and/or related topics.

A Combinatorial Introduction to Topology

Author: Michael Henle

Publisher: Courier Corporation

ISBN: 9780486679662

Category: Mathematics

Page: 310

View: 5914

DOWNLOAD NOW »
Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.

Thinking Geometrically

A Survey of Geometries

Author: Thomas Q. Sibley

Publisher: The Mathematical Association of America

ISBN: 1939512085

Category: Mathematics

Page: 586

View: 3158

DOWNLOAD NOW »
Thinking Geometrically: A Survey of Geometries is a well written and comprehensive survey of college geometry that would serve a wide variety of courses for both mathematics majors and mathematics education majors. Great care and attention is spent on developing visual insights and geometric intuition while stressing the logical structure, historical development, and deep interconnectedness of the ideas. Students with less mathematical preparation than upper-division mathematics majors can successfully study the topics needed for the preparation of high school teachers. There is a multitude of exercises and projects in those chapters developing all aspects of geometric thinking for these students as well as for more advanced students. These chapters include Euclidean Geometry, Axiomatic Systems and Models, Analytic Geometry, Transformational Geometry, and Symmetry. Topics in the other chapters, including Non-Euclidean Geometry, Projective Geometry, Finite Geometry, Differential Geometry, and Discrete Geometry, provide a broader view of geometry. The different chapters are as independent as possible, while the text still manages to highlight the many connections between topics. The text is self-contained, including appendices with the material in Euclid’s first book and a high school axiomatic system as well as Hilbert’s axioms. Appendices give brief summaries of the parts of linear algebra and multivariable calculus needed for certain chapters. While some chapters use the language of groups, no prior experience with abstract algebra is presumed. The text will support an approach emphasizing dynamical geometry software without being tied to any particular software.

Geometry and Topology

Author: Miles Reid,Balazs Szendroi

Publisher: Cambridge University Press

ISBN: 9780521848893

Category: Mathematics

Page: 196

View: 3902

DOWNLOAD NOW »
Geometry provides a whole range of views on the universe, serving as the inspiration, technical toolkit and ultimate goal for many branches of mathematics and physics. This book introduces the ideas of geometry, and includes a generous supply of simple explanations and examples. The treatment emphasises coordinate systems and the coordinate changes that generate symmetries. The discussion moves from Euclidean to non-Euclidean geometries, including spherical and hyperbolic geometry, and then on to affine and projective linear geometries. Group theory is introduced to treat geometric symmetries, leading to the unification of geometry and group theory in the Erlangen program. An introduction to basic topology follows, with the Möbius strip, the Klein bottle and the surface with g handles exemplifying quotient topologies and the homeomorphism problem. Topology combines with group theory to yield the geometry of transformation groups,having applications to relativity theory and quantum mechanics. A final chapter features historical discussions and indications for further reading. With minimal prerequisites, the book provides a first glimpse of many research topics in modern algebra, geometry and theoretical physics. The book is based on many years' teaching experience, and is thoroughly class-tested. There are copious illustrations, and each chapter ends with a wide supply of exercises. Further teaching material is available for teachers via the web, including assignable problem sheets with solutions.

Computer Graphics Through OpenGL

From Theory to Experiments, Second Edition

Author: Sumanta Guha

Publisher: CRC Press

ISBN: 1482258404

Category: Computers

Page: 951

View: 4559

DOWNLOAD NOW »
From geometric primitives to animation to 3D modeling to lighting, shading, and texturing, Computer Graphics Through OpenGL®: From Theory to Experiments, Second Edition presents a comprehensive introduction to computer graphics that uses an active learning style to teach key concepts. Equally emphasizing theory and practice, the book provides an understanding not only of the principles of 3D computer graphics, but also the use of the OpenGL® Application Programming Interface (API) to code 3D scenes and animation, including games and movies. The undergraduate core of the book is a one-semester sequence taking the student from zero knowledge of computer graphics to a mastery of the fundamental concepts with the ability to code applications using fourth-generation OpenGL. The remaining chapters explore more advanced topics, including the structure of curves and surfaces and the application of projective spaces and transformations. New to the Second Edition 30 more programs, 50 more experiments, and 50 more exercises Two new chapters on OpenGL 4.3 shaders and the programmable pipeline Coverage of: Vertex buffer and array objects Occlusion culling and queries and conditional rendering Texture matrices Multitexturing and texture combining Multisampling Point sprites Image and pixel manipulation Pixel buffer objects Shadow mapping Web Resource The book’s website at www.sumantaguha.com provides program source code that runs on various platforms. It includes a guide to installing OpenGL and executing the programs, special software to help run the experiments, and figures from the book. The site also contains an instructor’s manual with solutions to 100 problems (for qualifying instructors only).

Elementary Geometry

Author: Ilka Agricola,Thomas Friedrich

Publisher: American Mathematical Soc.

ISBN: 0821843478

Category: Mathematics

Page: 243

View: 364

DOWNLOAD NOW »
Elementary geometry provides the foundation of modern geometry. For the most part, the standard introductions end at the formal Euclidean geometry of high school. Agricola and Friedrich revisit geometry, but from the higher viewpoint of university mathematics. Plane geometry is developed from its basic objects and their properties and then moves to conics and basic solids, including the Platonic solids and a proof of Euler's polytope formula. Particular care is taken to explain symmetry groups, including the description of ornaments and the classification of isometries by their number of fixed points. Complex numbers are introduced to provide an alternative, very elegant approach to plane geometry. The authors then treat spherical and hyperbolic geometries, with special emphasis on their basic geometric properties. This largely self-contained book provides a much deeper understanding of familiar topics, as well as an introduction to new topics that complete the picture of two-dimensional geometries. For undergraduate mathematics students the book will be an excellent introduction to an advanced point of view on geometry. For mathematics teachers it will be a valuable reference and a source book for topics for projects. The book contains over 100 figures and scores of exercises. It is suitable for a one-semester course in geometry for undergraduates, particularly for mathematics majors and future secondary school teachers.

Classical Geometries in Modern Contexts

Geometry of Real Inner Product Spaces Third Edition

Author: Walter Benz

Publisher: Springer Science & Business Media

ISBN: 3034804202

Category: Mathematics

Page: 310

View: 6914

DOWNLOAD NOW »
The focus of this book and its geometric notions is on real vector spaces X that are finite or infinite inner product spaces of arbitrary dimension greater than or equal to 2. It characterizes both euclidean and hyperbolic geometry with respect to natural properties of (general) translations and general distances of X. Also for these spaces X, it studies the sphere geometries of Möbius and Lie as well as geometries where Lorentz transformations play the key role. Proofs of newer theorems characterizing isometries and Lorentz transformations under mild hypotheses are included, such as for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. New to this third edition is a chapter dealing with a simple and great idea of Leibniz that allows us to characterize, for these same spaces X, hyperplanes of euclidean, hyperbolic geometry, or spherical geometry, the geometries of Lorentz-Minkowski and de Sitter, and this through finite or infinite dimensions greater than 1. Another new and fundamental result in this edition concerns the representation of hyperbolic motions, their form and their transformations. Further we show that the geometry (P,G) of segments based on X is isomorphic to the hyperbolic geometry over X. Here P collects all x in X of norm less than one, G is defined to be the group of bijections of P transforming segments of P onto segments. The only prerequisites for reading this book are basic linear algebra and basic 2- and 3-dimensional real geometry. This implies that mathematicians who have not so far been especially interested in geometry could study and understand some of the great ideas of classical geometries in modern and general contexts.

Automated Deduction in Geometry

8th International Workshop, ADG 2010, Munich, Germany, July 22-24, 2010, Revised Papers

Author: Pascal Schreck,Julien Narboux,Jürgen Richter-Gebert

Publisher: Springer Science & Business Media

ISBN: 3642250696

Category: Computers

Page: 259

View: 7425

DOWNLOAD NOW »
This book constitutes the thoroughly refereed post-workshop proceedings of the 8th International Workshop on Automated Deduction in Geometry, ADG 2010, held in Munich, Germany in July 2010. The 13 revised full papers presented were carefully selected during two rounds of reviewing and improvement from the lectures given at the workshop. Topics addressed by the papers are incidence geometry using some kind of combinatoric argument; computer algebra; software implementation; as well as logic and proof assistants.

Oriented Projective Geometry

A Framework for Geometric Computations

Author: Jorge Stolfi

Publisher: Academic Press

ISBN: 1483265196

Category: Mathematics

Page: 246

View: 9168

DOWNLOAD NOW »
Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.

Roads to Geometry

Third Edition

Author: Edward C. Wallace,Stephen F. West

Publisher: Waveland Press

ISBN: 1478632046

Category: Mathematics

Page: 510

View: 9306

DOWNLOAD NOW »
Now available from Waveland Press, the Third Edition of Roads to Geometry is appropriate for several kinds of students. Pre-service teachers of geometry are provided with a thorough yet accessible treatment of plane geometry in a historical context. Mathematics majors will find its axiomatic development sufficiently rigorous to provide a foundation for further study in the areas of Euclidean and non-Euclidean geometry. By using the SMSG postulate set as a basis for the development of plane geometry, the authors avoid the pitfalls of many “foundations of geometry” texts that encumber the reader with such a detailed development of preliminary results that many other substantive and elegant results are inaccessible in a one-semester course. At the end of each section is an ample collection of exercises of varying difficulty that provides problems that both extend and clarify results of that section, as well as problems that apply those results. At the end of chapters 3–7, a summary list of the new definitions and theorems of each chapter is included.

Digital and Discrete Geometry

Theory and Algorithms

Author: Li Chen

Publisher: Springer

ISBN: 3319120999

Category: Computers

Page: 322

View: 2059

DOWNLOAD NOW »
This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData. The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and advanced topics. Chapters especially focus on the applications of these methods to other types of geometry, algebraic topology, image processing, computer vision and computer graphics. Digital and Discrete Geometry: Theory and Algorithms targets researchers and professionals working in digital image processing analysis, medical imaging (such as CT and MRI) and informatics, computer graphics, computer vision, biometrics, and information theory. Advanced-level students in electrical engineering, mathematics, and computer science will also find this book useful as a secondary text book or reference. Praise for this book: This book does present a large collection of important concepts, of mathematical, geometrical, or algorithmical nature, that are frequently used in computer graphics and image processing. These concepts range from graphs through manifolds to homology. Of particular value are the sections dealing with discrete versions of classic continuous notions. The reader finds compact definitions and concise explanations that often appeal to intuition, avoiding finer, but then necessarily more complicated, arguments... As a first introduction, or as a reference for professionals working in computer graphics or image processing, this book should be of considerable value." - Prof. Dr. Rolf Klein, University of Bonn.

Regular Polytopes

Author: H. S. M. Coxeter

Publisher: Courier Corporation

ISBN: 0486141586

Category: Mathematics

Page: 368

View: 333

DOWNLOAD NOW »
Foremost book available on polytopes, incorporating ancient Greek and most modern work. Discusses polygons, polyhedrons, and multi-dimensional polytopes. Definitions of symbols. Includes 8 tables plus many diagrams and examples. 1963 edition.

Automated Deduction in Geometry

Third International Workshop, ADG 2000, Zurich, Switzerland, September 25-27, 2000, Revised Papers

Author: Jürgen Richter-Gebert,Dongming Wang

Publisher: Springer

ISBN: 3540454101

Category: Computers

Page: 328

View: 7205

DOWNLOAD NOW »

Which Numbers Are Real?

Author: Michael Henle

Publisher: MAA

ISBN: 0883857774

Category: Mathematics

Page: 219

View: 3743

DOWNLOAD NOW »
Everyone knows the real numbers, those fundamental quantities that make possible all of mathematics from high school algebra and Euclidean geometry through the Calculus and beyond; and also serve as the basis for measurement in science, industry, and ordinary life. This book surveys alternative real number systems: systems that generalize and extend the real numbers yet stay close to these properties that make the reals central to mathematics.Alternative real numbers include many different kinds of numbers, for example multidimensional numbers (the complex numbers, the quaternions and others), infinitely small and infinitely large numbers (the hyperreal numbers and the surreal numbers), and numbers that represent positions in games (the surreal numbers). Each system has a well-developed theory, including applications to other areas of mathematics and science, such as physics, the theory of games, multi-dimensional geometry, and formal logic. They are all active areas of current mathematical research and each has unique features, in particular, characteristic methods of proof and implications for the philosophy of mathematics, both highlighted in this book.Alternative real number systems illuminate the central, unifying role of the real numbers and include some exciting and eccentric parts of mathematics. Which Numbers Are Real? Will be of interest to anyone with an interest in numbers, but specifically to upper-level undergraduates, graduate students, and professional mathematicians, particularly college mathematics teachers.

Non-Euclidean Geometries

János Bolyai Memorial Volume

Author: András Prékopa,Emil Molnár

Publisher: Springer Science & Business Media

ISBN: 0387295550

Category: Mathematics

Page: 506

View: 3024

DOWNLOAD NOW »
"From nothing I have created a new different world," wrote János Bolyai to his father, Wolgang Bolyai, on November 3, 1823, to let him know his discovery of non-Euclidean geometry, as we call it today. The results of Bolyai and the co-discoverer, the Russian Lobachevskii, changed the course of mathematics, opened the way for modern physical theories of the twentieth century, and had an impact on the history of human culture. The papers in this volume, which commemorates the 200th anniversary of the birth of János Bolyai, were written by leading scientists of non-Euclidean geometry, its history, and its applications. Some of the papers present new discoveries about the life and works of János Bolyai and the history of non-Euclidean geometry, others deal with geometrical axiomatics; polyhedra; fractals; hyperbolic, Riemannian and discrete geometry; tilings; visualization; and applications in physics.