Predictive Analytics and Data Mining

Concepts and Practice with RapidMiner

Author: Vijay Kotu,Bala Deshpande

Publisher: Morgan Kaufmann

ISBN: 0128016507

Category: Computers

Page: 446

View: 1545

DOWNLOAD NOW »
Put Predictive Analytics into Action Learn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining. You’ll be able to: 1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process. 2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases. 3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

Predictive Analytics and Data Mining

Concepts and Practice with RapidMiner

Author: Vijay Kotu,Bala Deshpande

Publisher: Morgan Kaufmann

ISBN: 9780128014608

Category: Computers

Page: 446

View: 6783

DOWNLOAD NOW »
Put Predictive Analytics into Action Learn the basics of Predictive Analysis and Data Mining through an easy to understand conceptual framework and immediately practice the concepts learned using the open source RapidMiner tool. Whether you are brand new to Data Mining or working on your tenth project, this book will show you how to analyze data, uncover hidden patterns and relationships to aid important decisions and predictions. Data Mining has become an essential tool for any enterprise that collects, stores and processes data as part of its operations. This book is ideal for business users, data analysts, business analysts, business intelligence and data warehousing professionals and for anyone who wants to learn Data Mining. You'll be able to: 1. Gain the necessary knowledge of different data mining techniques, so that you can select the right technique for a given data problem and create a general purpose analytics process. 2. Get up and running fast with more than two dozen commonly used powerful algorithms for predictive analytics using practical use cases. 3. Implement a simple step-by-step process for predicting an outcome or discovering hidden relationships from the data using RapidMiner, an open source GUI based data mining tool Predictive analytics and Data Mining techniques covered: Exploratory Data Analysis, Visualization, Decision trees, Rule induction, k-Nearest Neighbors, Naïve Bayesian, Artificial Neural Networks, Support Vector machines, Ensemble models, Bagging, Boosting, Random Forests, Linear regression, Logistic regression, Association analysis using Apriori and FP Growth, K-Means clustering, Density based clustering, Self Organizing Maps, Text Mining, Time series forecasting, Anomaly detection and Feature selection. Implementation files can be downloaded from the book companion site at www.LearnPredictiveAnalytics.com Demystifies data mining concepts with easy to understand language Shows how to get up and running fast with 20 commonly used powerful techniques for predictive analysis Explains the process of using open source RapidMiner tools Discusses a simple 5 step process for implementing algorithms that can be used for performing predictive analytics Includes practical use cases and examples

Data Science

Concepts and Practice with RapidMiner

Author: Vijay Kotu,Bala Deshpande

Publisher: Morgan Kaufmann

ISBN: 9780128147610

Category:

Page: 550

View: 2349

DOWNLOAD NOW »
Data science is about finding useful patterns in data. Rapid expansion in the volume of information collected by organizations entails a critical need for a framework and toolset to analyze and extract meaningful knowledge from data. Data science offers a set of techniques to uncover hidden patterns and relationships in data, in order to aid decision-making. Data Science presents the basic concepts behind many data science techniques in an easy to follow manner and prepares anyone with a basic grasp of mathematics to implement these techniques in their business, without the need to write programming code. The book uses an open source, GUI based data science tool to illustrate the concepts so that readers can follow the concepts and implement data science algorithms in parallel. The tool is open source, which means that learning data science with this tool is virtually cost free. The content and practical use cases described in this book are geared towards business and analytics professionals who use data. The reader of the book will acquire a comprehensive understanding of different data science techniques, and be prepared to select the right technique for a given data problem and to create a general purpose analytics process Contains fully updated content on data science, including tactics on how to mine business data for information Presents simple explanations for over twenty powerful data science techniques Enables the practical use of data science algorithms without the need for programming Demonstrates processes with practical use cases Introduces each algorithm or technique and explains the workings of a data science algorithm in plain language Describes the commonly used setup options for the open source tool RapidMiner

RapidMiner

Data Mining Use Cases and Business Analytics Applications

Author: Markus Hofmann,Ralf Klinkenberg

Publisher: CRC Press

ISBN: 1482205505

Category: Business & Economics

Page: 525

View: 1262

DOWNLOAD NOW »
Powerful, Flexible Tools for a Data-Driven World As the data deluge continues in today’s world, the need to master data mining, predictive analytics, and business analytics has never been greater. These techniques and tools provide unprecedented insights into data, enabling better decision making and forecasting, and ultimately the solution of increasingly complex problems. Learn from the Creators of the RapidMiner Software Written by leaders in the data mining community, including the developers of the RapidMiner software, RapidMiner: Data Mining Use Cases and Business Analytics Applications provides an in-depth introduction to the application of data mining and business analytics techniques and tools in scientific research, medicine, industry, commerce, and diverse other sectors. It presents the most powerful and flexible open source software solutions: RapidMiner and RapidAnalytics. The software and their extensions can be freely downloaded at www.RapidMiner.com. Understand Each Stage of the Data Mining Process The book and software tools cover all relevant steps of the data mining process, from data loading, transformation, integration, aggregation, and visualization to automated feature selection, automated parameter and process optimization, and integration with other tools, such as R packages or your IT infrastructure via web services. The book and software also extensively discuss the analysis of unstructured data, including text and image mining. Easily Implement Analytics Approaches Using RapidMiner and RapidAnalytics Each chapter describes an application, how to approach it with data mining methods, and how to implement it with RapidMiner and RapidAnalytics. These application-oriented chapters give you not only the necessary analytics to solve problems and tasks, but also reproducible, step-by-step descriptions of using RapidMiner and RapidAnalytics. The case studies serve as blueprints for your own data mining applications, enabling you to effectively solve similar problems.

Mastering Predictive Analytics with Python

Author: Joseph Babcock

Publisher: Packt Publishing Ltd

ISBN: 1785889826

Category: Computers

Page: 334

View: 9273

DOWNLOAD NOW »
Exploit the power of data in your business by building advanced predictive modeling applications with Python About This Book Master open source Python tools to build sophisticated predictive models Learn to identify the right machine learning algorithm for your problem with this forward-thinking guide Grasp the major methods of predictive modeling and move beyond the basics to a deeper level of understanding Who This Book Is For This book is designed for business analysts, BI analysts, data scientists, or junior level data analysts who are ready to move from a conceptual understanding of advanced analytics to an expert in designing and building advanced analytics solutions using Python. You're expected to have basic development experience with Python. What You Will Learn Gain an insight into components and design decisions for an analytical application Master the use Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover the advanced methods to analyze structured and unstructured data Find out how to deploy a machine learning model in a production environment Visualize the performance of models and the insights they produce Scale your solutions as your data grows using Python Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis In Detail The volume, diversity, and speed of data available has never been greater. Powerful machine learning methods can unlock the value in this information by finding complex relationships and unanticipated trends. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications to deliver insights that are of tremendous value to their organizations. In Mastering Predictive Analytics with Python, you will learn the process of turning raw data into powerful insights. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications and how to quickly apply these methods to your own data to create robust and scalable prediction services. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates not only how these methods work, but how to implement them in practice. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring the insights of predictive modeling to life Style and approach This book emphasizes on explaining methods through example data and code, showing you templates that you can quickly adapt to your own use cases. It focuses on both a practical application of sophisticated algorithms and the intuitive understanding necessary to apply the correct method to the problem at hand. Through visual examples, it also demonstrates how to convey insights through insightful charts and reporting.

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 9419

DOWNLOAD NOW »
Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Data Mining Cookbook

Modeling Data for Marketing, Risk, and Customer Relationship Management

Author: Olivia Parr Rud

Publisher: John Wiley & Sons

ISBN: 0471437514

Category: Computers

Page: 416

View: 2391

DOWNLOAD NOW »
Increase profits and reduce costs by utilizing this collection of models of the most commonly asked data mining questions In order to find new ways to improve customer sales and support, and as well as manage risk, business managers must be able to mine company databases. This book provides a step-by-step guide to creating and implementing models of the most commonly asked data mining questions. Readers will learn how to prepare data to mine, and develop accurate data mining questions. The author, who has over ten years of data mining experience, also provides actual tested models of specific data mining questions for marketing, sales, customer service and retention, and risk management. A CD-ROM, sold separately, provides these models for reader use.

Modeling Techniques in Predictive Analytics

Business Problems and Solutions with R

Author: Thomas W. Miller

Publisher: Pearson Education

ISBN: 0133886018

Category: Business & Economics

Page: 359

View: 3892

DOWNLOAD NOW »
Today, successful firms win by understanding their data more deeply than competitors do. In short, they compete based on analytics. Now, in Modeling Techniques in Predictive Analytics, the leader of Northwestern University's prestigious analytics program brings together all the concepts, techniques, and R code you need to excel in analytics. Thomas W. Miller's unique balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike.--

Data Mining Applications with R

Author: Yanchang Zhao,Yonghua Cen

Publisher: Academic Press

ISBN: 0124115209

Category: Computers

Page: 514

View: 2653

DOWNLOAD NOW »
Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries Presents various case studies in real-world applications, which will help readers to apply the techniques in their work Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves

Data Mining and Predictive Analytics

Author: Daniel T. Larose,Chantal D. Larose

Publisher: John Wiley & Sons

ISBN: 1118868676

Category: Computers

Page: 824

View: 4665

DOWNLOAD NOW »
Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics, Second Edition: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant.com, with exclusive password-protected instructor content Data Mining and Predictive Analytics, Second Edition will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Data Science and Big Data Analytics

Discovering, Analyzing, Visualizing and Presenting Data

Author: EMC Education Services

Publisher: John Wiley & Sons

ISBN: 1118876059

Category: Computers

Page: 432

View: 9972

DOWNLOAD NOW »
Data Science and Big Data Analytics is about harnessing the power of data for new insights. The book covers the breadth of activities and methods and tools that Data Scientists use. The content focuses on concepts, principles and practical applications that are applicable to any industry and technology environment, and the learning is supported and explained with examples that you can replicate using open-source software. This book will help you: Become a contributor on a data science team Deploy a structured lifecycle approach to data analytics problems Apply appropriate analytic techniques and tools to analyzing big data Learn how to tell a compelling story with data to drive business action Prepare for EMC Proven Professional Data Science Certification Corresponding data sets are available at www.wiley.com/go/9781118876138. Get started discovering, analyzing, visualizing, and presenting data in a meaningful way today!

Fundamentals of Machine Learning for Predictive Data Analytics

Algorithms, Worked Examples, and Case Studies

Author: John D. Kelleher,Brian Mac Namee,Aoife D'Arcy

Publisher: MIT Press

ISBN: 0262029448

Category: Computers

Page: 624

View: 3265

DOWNLOAD NOW »
A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.

Decision Management Systems

A Practical Guide to Using Business Rules and Predictive Analytics

Author: James Taylor

Publisher: Pearson Education

ISBN: 0132884445

Category: Business & Economics

Page: 320

View: 9474

DOWNLOAD NOW »
"A very rich book sprinkled with real-life examples as well as battle-tested advice.” —Pierre Haren, VP ILOG, IBM "James does a thorough job of explaining Decision Management Systems as enablers of a formidable business transformation.” —Deepak Advani, Vice President, Business Analytics Products and SPSS, IBM Build Systems That Work Actively to Help You Maximize Growth and Profits Most companies rely on operational systems that are largely passive. But what if you could make your systems active participants in optimizing your business? What if your systems could act intelligently on their own? Learn, not just report? Empower users to take action instead of simply escalating their problems? Evolve without massive IT investments? Decision Management Systems can do all that and more. In this book, the field’s leading expert demonstrates how to use them to drive unprecedented levels of business value. James Taylor shows how to integrate operational and analytic technologies to create systems that are more agile, more analytic, and more adaptive. Through actual case studies, you’ll learn how to combine technologies such as predictive analytics, optimization, and business rules—improving customer service, reducing fraud, managing risk, increasing agility, and driving growth. Both a practical how-to guide and a framework for planning, Decision Management Systems focuses on mainstream business challenges. Coverage includes Understanding how Decision Management Systems can transform your business Planning your systems “with the decision in mind” Identifying, modeling, and prioritizing the decisions you need to optimize Designing and implementing robust decision services Monitoring your ongoing decision-making and learning how to improve it Proven enablers of effective Decision Management Systems: people, process, and technology Identifying and overcoming obstacles that can derail your Decision Management Systems initiative

Sports Data Mining

Author: Robert P. Schumaker,Osama K. Solieman,Hsinchun Chen

Publisher: Springer Science & Business Media

ISBN: 9781441967305

Category: Computers

Page: 138

View: 1367

DOWNLOAD NOW »
Data mining is the process of extracting hidden patterns from data, and it’s commonly used in business, bioinformatics, counter-terrorism, and, increasingly, in professional sports. First popularized in Michael Lewis’ best-selling Moneyball: The Art of Winning An Unfair Game, it is has become an intrinsic part of all professional sports the world over, from baseball to cricket to soccer. While an industry has developed based on statistical analysis services for any given sport, or even for betting behavior analysis on these sports, no research-level book has considered the subject in any detail until now. Sports Data Mining brings together in one place the state of the art as it concerns an international array of sports: baseball, football, basketball, soccer, greyhound racing are all covered, and the authors (including Hsinchun Chen, one of the most esteemed and well-known experts in data mining in the world) present the latest research, developments, software available, and applications for each sport. They even examine the hidden patterns in gaming and wagering, along with the most common systems for wager analysis.

R and Data Mining

Examples and Case Studies

Author: Yanchang Zhao

Publisher: Academic Press

ISBN: 012397271X

Category: Mathematics

Page: 256

View: 1751

DOWNLOAD NOW »
R and Data Mining introduces researchers, post-graduate students, and analysts to data mining using R, a free software environment for statistical computing and graphics. The book provides practical methods for using R in applications from academia to industry to extract knowledge from vast amounts of data. Readers will find this book a valuable guide to the use of R in tasks such as classification and prediction, clustering, outlier detection, association rules, sequence analysis, text mining, social network analysis, sentiment analysis, and more. Data mining techniques are growing in popularity in a broad range of areas, from banking to insurance, retail, telecom, medicine, research, and government. This book focuses on the modeling phase of the data mining process, also addressing data exploration and model evaluation. With three in-depth case studies, a quick reference guide, bibliography, and links to a wealth of online resources, R and Data Mining is a valuable, practical guide to a powerful method of analysis. Presents an introduction into using R for data mining applications, covering most popular data mining techniques Provides code examples and data so that readers can easily learn the techniques Features case studies in real-world applications to help readers apply the techniques in their work

Predictive Analytics

The Power to Predict Who Will Click, Buy, Lie, or Die

Author: Eric Siegel

Publisher: John Wiley & Sons

ISBN: 1119145686

Category: Business & Economics

Page: 368

View: 6736

DOWNLOAD NOW »
"Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive Analytics unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated — and Hillary for America 2016 plans to calculate — the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a consumer of it — or consumed by it — get a handle on the power of Predictive Analytics.

Web and Network Data Science

Modeling Techniques in Predictive Analytics

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 0133887642

Category: Computers

Page: 384

View: 7636

DOWNLOAD NOW »
Master modern web and network data modeling: both theory and applications. In Web and Network Data Science, a top faculty member of Northwestern University’s prestigious analytics program presents the first fully-integrated treatment of both the business and academic elements of web and network modeling for predictive analytics. Some books in this field focus either entirely on business issues (e.g., Google Analytics and SEO); others are strictly academic (covering topics such as sociology, complexity theory, ecology, applied physics, and economics). This text gives today's managers and students what they really need: integrated coverage of concepts, principles, and theory in the context of real-world applications. Building on his pioneering Web Analytics course at Northwestern University, Thomas W. Miller covers usability testing, Web site performance, usage analysis, social media platforms, search engine optimization (SEO), and many other topics. He balances this practical coverage with accessible and up-to-date introductions to both social network analysis and network science, demonstrating how these disciplines can be used to solve real business problems.

Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications

Author: Gary Miner

Publisher: Academic Press

ISBN: 012386979X

Category: Mathematics

Page: 1053

View: 3796

DOWNLOAD NOW »
The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. This comprehensive professional reference brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. The Handbook of Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications presents a comprehensive how- to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities. -Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible -Numerous examples, tutorials, power points and datasets available via companion website on Elsevierdirect.com -Glossary of text mining terms provided in the appendix

Modeling Techniques in Predictive Analytics with Python and R

A Guide to Data Science

Author: Thomas W. Miller

Publisher: FT Press

ISBN: 013389214X

Category: Computers

Page: 448

View: 8042

DOWNLOAD NOW »
Master predictive analytics, from start to finish Start with strategy and management Master methods and build models Transform your models into highly-effective code—in both Python and R This one-of-a-kind book will help you use predictive analytics, Python, and R to solve real business problems and drive real competitive advantage. You’ll master predictive analytics through realistic case studies, intuitive data visualizations, and up-to-date code for both Python and R—not complex math. Step by step, you’ll walk through defining problems, identifying data, crafting and optimizing models, writing effective Python and R code, interpreting results, and more. Each chapter focuses on one of today’s key applications for predictive analytics, delivering skills and knowledge to put models to work—and maximize their value. Thomas W. Miller, leader of Northwestern University’s pioneering program in predictive analytics, addresses everything you need to succeed: strategy and management, methods and models, and technology and code. If you’re new to predictive analytics, you’ll gain a strong foundation for achieving accurate, actionable results. If you’re already working in the field, you’ll master powerful new skills. If you’re familiar with either Python or R, you’ll discover how these languages complement each other, enabling you to do even more. All data sets, extensive Python and R code, and additional examples available for download at http://www.ftpress.com/miller/ Python and R offer immense power in predictive analytics, data science, and big data. This book will help you leverage that power to solve real business problems, and drive real competitive advantage. Thomas W. Miller’s unique balanced approach combines business context and quantitative tools, illuminating each technique with carefully explained code for the latest versions of Python and R. If you’re new to predictive analytics, Miller gives you a strong foundation for achieving accurate, actionable results. If you’re already a modeler, programmer, or manager, you’ll learn crucial skills you don’t already have. Using Python and R, Miller addresses multiple business challenges, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, text analytics, sentiment analysis, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and spatio-temporal data. You’ll learn why each problem matters, what data are relevant, and how to explore the data you’ve identified. Miller guides you through conceptually modeling each data set with words and figures; and then modeling it again with realistic code that delivers actionable insights. You’ll walk through model construction, explanatory variable subset selection, and validation, mastering best practices for improving out-of-sample predictive performance. Miller employs data visualization and statistical graphics to help you explore data, present models, and evaluate performance. Appendices include five complete case studies, and a detailed primer on modern data science methods. Use Python and R to gain powerful, actionable, profitable insights about: Advertising and promotion Consumer preference and choice Market baskets and related purchases Economic forecasting Operations management Unstructured text and language Customer sentiment Brand and price Sports team performance And much more