Real Analysis (Classic Version)

Author: Halsey Royden,Patrick Fitzpatrick

Publisher: Math Classics

ISBN: 9780134689494

Category: Mathematics

Page: 528

View: 3050

DOWNLOAD NOW »
Originally published in 2010, reissued as part of Pearson's modern classic series.

Algebra

Aus dem Englischen übersetzt von Annette A’Campo

Author: Michael Artin

Publisher: Birkhäuser

ISBN: 9783764359386

Category: Mathematics

Page: 705

View: 7198

DOWNLOAD NOW »
Important though the general concepts and propositions may be with which the modem and industrious passion for axiomatizing and generalizing has presented us, in algebra perhaps more than anywhere else, nevertheless I am convinced that the special problems in all their complexity constitute the stock and core of mathematics, and that to master their difficulties requires on the whole the harder labor. HERMANN WEYL Die Arbeit an diesem Buch begann vor etwa zwanzig Jahren mit Aufzeichnungen zur Ergänzung meiner Algebravorlesungen. Ich wollte einige konkrete Themen, wie Symmetrie, lineare Gruppen und quadratische Zahlkörper, ausführlicher be­ handeln als dies im vorgesehenen Text der Fall war, und darüberhinaus wollte ich den Schwerpunkt in der Gruppentheorie von den Permutationsgruppen auf Matrixgruppen verlagern. Ein anderes ständig wiederkehrendes Thema, nämlich Gitter, sind spontan aufgetaucht. Ich hoffte, der konkrete Stoff könne das Interesse der Studenten wecken und gleichzeitig die Abstraktionen verständlicher machen, kurz gesagt, sie sollten weiter kommen, indem sie beides gleichzeitig lernten. Das bewährte sich gut. Es dauerte einige Zeit, bis ich entschieden hatte, welche Themen ich behandeln wollte, und allmählich verteilte ich mehr und mehr Aufzeichnungen und ging schließlich dazu über, die ganze Vorlesung mit diesem Skript zu bestrei­ ten. Auf diese Weise ist ein Buch entstanden, das, wie ich meine, etwas anders ist als die existierenden Bücher. Allerdings haben mir die Probleme, die ich damit hatte, die einzelnen Teile des Buches zu einem Ganzen zusammenzufügen, einige Kopfschmerzen bereitet; ich kann also nicht empfehlen, auf diese Art anzufangen, ein Buch zu schreiben.

Bernhard Riemann 1826–1866

Wendepunkte in der Auffassung der Mathematik

Author: Detlef Laugwitz

Publisher: Springer-Verlag

ISBN: 3034889836

Category: Mathematics

Page: 348

View: 9670

DOWNLOAD NOW »
Das Riemannsche Integral lernen schon die Schüler kennen, die Theorien der reellen und der komplexen Funktionen bauen auf wichtigen Begriffsbildungen und Sätzen Riemanns auf, die Riemannsche Geometrie ist für Einsteins Gravitationstheorie und ihre Erweiterungen unentbehrlich, und in der Zahlentheorie ist die berühmte Riemannsche Vermutung noch immer offen. Riemann und sein um fünf Jahre jüngerer Freund Richard Dedekind sahen sich als Schüler von Gauss und Dirichlet. Um die Mitte des 19. Jahrhunderts leiteten sie den Übergang zur "modernen Mathematik" ein, der eine in Analysis und Geometrie, der andere in der Algebra mit der Hinwendung zu Mengen und Strukturen. Dieses Buch ist der erste Versuch, Riemanns wissenschaftliches Werk unter einem einheitlichen Gesichtspunkt zusammenzufassend darzustellen. Riemann gilt als einer der Philosophen unter den Mathematikern. Er stellte das Denken in Begriffen neben die zuvor vorherrschende algorithmische Auffassung von der Mathematik, welche die Gegenstände der Untersuchung, in Formeln und Figuren, in Termumformungen und regelhaften Konstruktionen als die allein legitimen Methoden sah. David Hilbert hat als Riemanns Grundsatz herausgestellt, die Beweise nicht durch Rechnung, sondern lediglich durch Gedanken zu zwingen. Hermann Weyl sah als das Prinzip Riemanns in Mathematik und Physik, "die Welt als das erkenntnistheoretische Motiv..., die Welt aus ihrem Verhalten im un- endlich kleinen zu verstehen."

Anschauliche Funktionentheorie

Author: Tristan Needham

Publisher: Oldenbourg Wissenschaftsverlag

ISBN: 9783486709025

Category: Mathematics

Page: 685

View: 2117

DOWNLOAD NOW »
Needhams neuartiger Zugang zur Funktionentheorie wurde von der Fachpresse begeistert aufgenommen. Mit über 500 zum großen Teil perspektivischen Grafiken vermittelt er im wahrsten Sinne des Wortes eine Anschauung von der sonst oft als trocken empfundenen Funktionentheorie. 'Anschauliche Funktionentheorie ist eine wahre Freude und ein Buch so recht nach meinem Herzen. Indem er ausschließlich seine neuartige geometrische Perspektive verwendet, enthüllt Tristan Needham viele überraschende und bisher weitgehend unbeachtete Facetten der Schönheit der Funktionentheorie.' (Sir Roger Penrose)

Interactive Statistics (Classic Version)

Author: Martha Aliaga,Brenda Gunderson

Publisher: Pearson

ISBN: 9780134995465

Category: Mathematical statistics

Page: 1092

View: 4008

DOWNLOAD NOW »
For algebra-based Introductory Statistics courses. This text takes a hands-on approach to the introduction of basic statistical methods and concepts, using a highly interactive method that promotes active learning and true assimilation of key concepts. Students are taught to ask "why," thinking like a statistician to find the logical solution. With its strong emphasis on data analysis, the book seeks to make students better consumers of statistics and to give them the skills to understand and interpret statistical results using real data from newspapers and research journals.

Was ist Mathematik?

Author: Richard Courant,Herbert Robbins

Publisher: Springer-Verlag

ISBN: 3642137016

Category: Mathematics

Page: 400

View: 6012

DOWNLOAD NOW »
"Was ist Mathematik?" lädt jeden ein, das Reich der Mathematik zu betreten, der neugierig genug ist, sich auf ein Abenteuer einzulassen. Das Buch richtet sich an Leser jeden Alters und jeder Vorbildung. Gymnasiallehrer erhalten eine Fülle von Beispielen, Studenten bietet es Orientierung, und Dozenten werden sich an den Feinheiten der Darstellung zweier Meister ihres Faches erfreuen.

Analysis II

Author: Vladimir A. Zorich

Publisher: Springer

ISBN: 9783540462316

Category: Mathematics

Page: 708

View: 2036

DOWNLOAD NOW »
Ausführlich, klar, exakt, solide: die Anfänge der Analysis in 2 Bänden. Von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie u.a. Differenzialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Deutlich auf naturwissenschaftliche Fragen ausgerichtet, erläutert dieses Werk detailliert Begriffe, Inhalte und Sätze der Integral- und Differenzialrechnung. Die Fülle hilfreicher Beispiele, Aufgaben und Anwendungen ist selten in Analysisbüchern zu finden. Band 2 beschreibt den heutigen Stand der klassischen Analysis.

Principia Mathematica.

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: 167

View: 7952

DOWNLOAD NOW »

Analysis 1

Author: V. A. Zorich

Publisher: Springer-Verlag

ISBN: 3540332782

Category: Mathematics

Page: 598

View: 5481

DOWNLOAD NOW »
Ausführlicher Einblick in die Anfänge der Analysis: von der Einführung der reellen Zahlen bis hin zu fortgeschrittenen Themen wie Differentialformen auf Mannigfaltigkeiten, asymptotische Betrachtungen, Fourier-, Laplace- und Legendre-Transformationen, elliptische Funktionen und Distributionen. Ausgerichtet auf naturwissenschaftliche Fragestellungen und in detaillierter Herangehensweise an die Integral- und Differentialrechnung. Mit einer Fülle hilfreicher Beispiele, Aufgaben und Anwendungen. In Band 1: vollständige Übersicht zur Integral- und Differentialrechnung einer Variablen, erweitert um die Differentialrechnung mehrerer Variablen.

(K)ein Gespür für Zahlen

So bekommt man den Durchblick in Mathe

Author: Barbara Oakley

Publisher: MVG Verlag

ISBN: 3864157811

Category: Mathematics

Page: 352

View: 6151

DOWNLOAD NOW »
Mathematik versteht man oder eben nicht. Der eine ist dafür natürlich begabt, dem anderen bleibt dieses Fach für immer ein Rätsel. Stimmt nicht, sagt nun Barbara Oakley und zeigt mit ihrem Buch, dass wirklich jeder ein Gespür für Zahlen hat. Mathematik braucht nämlich nicht nur analytisches Denken, sondern auch den kreativen Geist. Denn noch mehr als um Formeln geht es um die Freiheit, einen der vielen möglichen Lösungsansätze zu finden. Der Weg ist das Ziel. Und wie man zum richtigen Ergebnis kommt, ist eine Kunst, die man entwickeln, entdecken und in sich wecken kann. Die Autorin vermittelt eine Vielfalt an Techniken und Werkzeugen, die das Verständnis von Mathematik und Naturwissenschaft grundlegend verbessern. (K)ein Gespür für Zahlen nimmt Ihnen — vor allem wenn Sie sich in Schule, Uni oder Beruf mathematisch oder naturwissenschaftlich beweisen müssen — nicht nur die Grundangst, sondern stärkt Ihren Mut, Ihren mathematischen Fähigkeiten zu vertrauen. So macht Mathe Spaß!

Lineare Algebra

Einführung, Grundlagen, Übungen

Author: Howard Anton

Publisher: Springer Verlag

ISBN: 9783827403247

Category: Mathematics

Page: 680

View: 8835

DOWNLOAD NOW »
In Ihrer Hand liegt ein Lehrbuch - in sieben englischsprachigen Ausgaben praktisch erprobt - das Sie mit groem didaktischen Geschick, zudem angereichert mit zahlreichen Ubungsaufgaben, in die Grundlagen der linearen Algebra einfuhrt. Kenntnisse der Analysis werden fur das Verstandnis nicht generell vorausgesetzt, sind jedoch fur einige besonders gekennzeichnete Beispiele notig. Padagogisch erfahren, behandelt der Autor grundlegende Beweise im laufenden Text; fur den interessierten Leser jedoch unverzichtbare Beweise finden sich am Ende der entsprechenden Kapitel. Ein weiterer Vorzug des Buches: Die Darstellung der Zusammenhange zwischen den einzelnen Stoffgebieten - linearen Gleichungssystemen, Matrizen, Determinanten, Vektoren, linearen Transformationen und Eigenwerten.

Algorithmen - Eine Einführung

Author: Thomas H. Cormen,Charles E. Leiserson,Ronald Rivest,Clifford Stein

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110522012

Category: Computers

Page: 1339

View: 1829

DOWNLOAD NOW »
Der "Cormen" bietet eine umfassende und vielseitige Einführung in das moderne Studium von Algorithmen. Es stellt viele Algorithmen Schritt für Schritt vor, behandelt sie detailliert und macht deren Entwurf und deren Analyse allen Leserschichten zugänglich. Sorgfältige Erklärungen zur notwendigen Mathematik helfen, die Analyse der Algorithmen zu verstehen. Den Autoren ist es dabei geglückt, Erklärungen elementar zu halten, ohne auf Tiefe oder mathematische Exaktheit zu verzichten. Jedes der weitgehend eigenständig gestalteten Kapitel stellt einen Algorithmus, eine Entwurfstechnik, ein Anwendungsgebiet oder ein verwandtes Thema vor. Algorithmen werden beschrieben und in Pseudocode entworfen, der für jeden lesbar sein sollte, der schon selbst ein wenig programmiert hat. Zahlreiche Abbildungen verdeutlichen, wie die Algorithmen arbeiten. Ebenfalls angesprochen werden Belange der Implementierung und andere technische Fragen, wobei, da Effizienz als Entwurfskriterium betont wird, die Ausführungen eine sorgfältige Analyse der Laufzeiten der Programme mit ein schließen. Über 1000 Übungen und Problemstellungen und ein umfangreiches Quellen- und Literaturverzeichnis komplettieren das Lehrbuch, dass durch das ganze Studium, aber auch noch danach als mathematisches Nachschlagewerk oder als technisches Handbuch nützlich ist. Für die dritte Auflage wurde das gesamte Buch aktualisiert. Die Änderungen sind vielfältig und umfassen insbesondere neue Kapitel, überarbeiteten Pseudocode, didaktische Verbesserungen und einen lebhafteren Schreibstil. So wurden etwa - neue Kapitel zu van-Emde-Boas-Bäume und mehrfädigen (engl.: multithreaded) Algorithmen aufgenommen, - das Kapitel zu Rekursionsgleichungen überarbeitet, sodass es nunmehr die Teile-und-Beherrsche-Methode besser abdeckt, - die Betrachtungen zu dynamischer Programmierung und Greedy-Algorithmen überarbeitet; Memoisation und der Begriff des Teilproblem-Graphen als eine Möglichkeit, die Laufzeit eines auf dynamischer Programmierung beruhender Algorithmus zu verstehen, werden eingeführt. - 100 neue Übungsaufgaben und 28 neue Problemstellungen ergänzt. Umfangreiches Dozentenmaterial (auf englisch) ist über die Website des US-Verlags verfügbar.

Differentialgleichungen und ihre Anwendungen

Author: Martin Braun

Publisher: Springer-Verlag

ISBN: 3642973418

Category: Mathematics

Page: 596

View: 894

DOWNLOAD NOW »
Dieses richtungsweisende Lehrbuch für die Anwendung der Mathematik in anderen Wissenschaftszweigen gibt eine Einführung in die Theorie der gewöhnlichen Differentialgleichungen. Fortran und APL-Programme geben den Studenten die Möglichkeit, verschiedene numerische Näherungsverfahren an ihrem PC selbst durchzurechnen. Aus den Besprechungen: "Die Darstellung ist überall mathematisch streng und zudem ungemein anregend. Abgesehen von manchen historischen Bemerkungen ... tragen dazu die vielen mit ausführlichem Hintergrund sehr eingehend entwickelten praktischen Anwendungen bei. ... Besondere Aufmerksamkeit wird der physikalisch und technisch so wichtigen Frage nach Stabilität von Lösungen eines Systems von Differentialgleichungen gewidmet. Das Buch ist wegen seiner geringen Voraussetzungen und vorzüglichen Didaktik schon für alle Studenten des 3. Semesters geeignet; seine eminent praktische Haltung empfiehlt es aber auch für alle Physiker, die mit Differentialgleichungen und ihren Anwendungen umzugehen haben." #Physikalische Blätter#