Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis

Fractional Dynamics, Network Dynamics, Classical Dynamics and Fractal Dynamics with Their Numerical Simulations

Author: Changpin Li,Yujiang Wu,Ruisong Ye

Publisher: World Scientific

ISBN: 981443647X

Category: Mathematics

Page: 416

View: 6061

Nonlinear dynamics is still a hot and challenging topic. In this edited book, we focus on fractional dynamics, infinite dimensional dynamics defined by the partial differential equation, network dynamics, fractal dynamics, and their numerical analysis and simulation. Fractional dynamics is a new topic in the research field of nonlinear dynamics which has attracted increasing interest due to its potential applications in the real world, such as modeling memory processes and materials. In this part, basic theory for fractional differential equations and numerical simulations for these equations will be introduced and discussed. In the infinite dimensional dynamics part, we emphasize on numerical calculation and theoretical analysis, including constructing various numerical methods and computing the corresponding limit sets, etc. In the last part, we show interest in network dynamics and fractal dynamics together with numerical simulations as well as their applications. Contents:Gronwall Inequalities (Fanhai Zeng, Jianxiong Cao and Changpin Li)Existence and Uniqueness of the Solutions to the Fractional Differential Equations (Yutian Ma, Fengrong Zhang and Changpin Li)Finite Element Methods for Fractional Differential Equations (Changpin Li and Fanhai Zeng)Fractional Step Method for the Nonlinear Conservation Laws with Fractional Dissipation (Can Li and Weihua Deng)Error Analysis of Spectral Method for the Space and Time Fractional Fokker–Planck Equation (Tinggang Zhao and Haiyan Xuan)A Discontinuous Finite Element Method for a Type of Fractional Cauchy Problem (Yunying Zheng)Asymptotic Analysis of a Singularly Perturbed Parabolic Problem in a General Smooth Domain (Yu-Jiang Wu, Na Zhang and Lun-Ji Song)Incremental Unknowns Methods for the ADI and ADSI Schemes (Ai-Li Yang, Yu-Jiang Wu and Zhong-Hua Yang)Stability of a Collocated FV Scheme for the 3D Navier–Stokes Equations (Xu Li and Shu-qin Wang)Computing the Multiple Positive Solutions to p–Henon Equation on the Unit Square (Zhaoxiang Li and Zhonghua Yang)Multilevel WBIUs Methods for Reaction–Diffusion Equations (Yang Wang, Yu-Jiang Wu and Ai-Li Yang)Models and Dynamics of Deterministically Growing Networks (Weigang Sun, Jingyuan Zhang and Guanrong Chen)On Different Approaches to Synchronization of Spatiotemporal Chaos in Complex Networks (Yuan Chai and Li-Qun Chen)Chaotic Dynamical Systems on Fractals and Their Applications to Image Encryption (Ruisong Ye, Yuru Zou and Jian Lu)Planar Crystallographic Symmetric Tiling Patterns Generated From Invariant Maps (Ruisong Ye, Haiying Zhao and Yuanlin Ma)Complex Dynamics in a Simple Two-Dimensional Discrete System (Huiqing Huang and Ruisong Ye)Approximate Periodic Solutions of Damped Harmonic Oscillators with Delayed Feedback (Qian Guo)The Numerical Methods in Option Pricing Problem (Xiong Bo)Synchronization and Its Control Between Two Coupled Networks (Yongqing Wu and Minghai Lü) Readership: Senior undergraduates, postgraduates and experts in nonlinear dynamics with numerical analysis. Keywords:Fractional Dynamics;Infinite Dimensional Dynamics;Network Dynamics;Fractal DynamicsKey Features:The topics in this edited book are very hot and highly impressiveIssues and methods of such topics in this edited book have not been made available yetThe present edited book is suitable for various levels of researchers, such as senior undergraduates, postgraduates, and experts

Recent Advances in Nonlinear Dynamics and Synchronization

Theory and Applications

Author: Kyandoghere Kyamakya,Herwig Unger,Jean Chamberlain Chedjou,Nikolai F. Rulkov,Zhong Li

Publisher: Springer

ISBN: 3642042279

Category: Computers

Page: 399

View: 8060

In essence, the dynamics of real world systems (i.e. engineered systems, natural systems, social systesms, etc.) is nonlinear. The analysis of this nonlinear character is generally performed through both observational and modeling processes aiming at deriving appropriate models (mathematical, logical, graphical, etc.) to simulate or mimic the spatiotemporal dynamics of the given systems. The complex intrinsic nature of these systems (i.e. nonlinearity and spatiotemporal dynamics) can lead to striking dynamical behaviors such as regular or irregular, stable or unstable, periodicity or multi-periodicity, torus or chaotic dynamics. The various potential applications of the knowledge about such dynamics in technical sciences (engineering) are being intensively demonstrated by diverse ongoing research activities worldwide. However, both the modeling and the control of the nonlinear dynamics in a range of systems is still not yet well-understood (e.g. system models with time varying coefficients, immune systems, swarm intelligent systems, chaotic and fractal systems, stochastic systems, self-organized systems, etc.). This is due amongst others to the challenging task of establishing a precise and systematic fundamental or theoretical framework (e.g. methods and tools) to analyze, understand, explain and predict the nonlinear dynamical behavior of these systems, in some cases even in real-time. The full insight in systems’ nonlinear dynamic behavior is generally achieved through approaches involving analytical, numerical and/or experimental methods.

Advances in Numerical Analysis: Nonlinear partial differential equations and dynamical systems

Author: William Allan Light,Science and Engineering Research Council (Great Britain)

Publisher: Oxford University Press, USA

ISBN: 9780198534389

Category: Mathematics

Page: 288

View: 1565

The aim of this volume is to present research workers and graduate students in numerical analysis with a state-of-the-art survey of some of the most active areas of numerical analysis. This, and a companion volume, arise from a Summer School intended to cover recent trends in the subject. The chapters are written by the main lecturers at the School. Each is an internationally renowned expert in his respective field. This volume covers research in the numerical analysis of nonlinear phenomena: evolution equations, free boundary problems, spectral methods, and numerical methods for dynamical systems, nonlinear stability, and differential equations on manifolds.

Recent Advances in Numerical Methods and Applications II

Author: Oleg P Iliev,Mikhail S Kaschiev,Svetozar D Margenov,Blagovest H Sendov,Panayot S Vassilevski

Publisher: World Scientific

ISBN: 9814531855


Page: 924

View: 7416

This volume contains the proceedings of the 4th International Conference on Numerical Methods and Applications. The major topics covered include: general finite difference, finite volume, finite element and boundary element methods, general numerical linear algebra and parallel computations, numerical methods for nonlinear problems and multiscale methods, multigrid and domain decomposition methods, CFD computations, mathematical modeling in structural mechanics, and environmental and engineering applications. The volume reflects the current research trends in the specified areas of numerical methods and their applications. Contents: Computational Issues in Large Scale Eigenvalue ProblemsCombustion Modeling in Industrial FurnacesMonte Carlo MethodsMultilevel Methods for Incompressible Viscous FlowsApproximation of Nonlinear and Functional PDEsSolving Linear Systems with Error ControlRegular Numerical Methods for Inverse and Ill-Posed ProblemsMultifield ProblemsParallel and Distributed Numerical Computing with ApplicationsParameter-Robust Numerical Methods for Singularly Perturbed and Convection-Dominated ProblemsFinite Difference MethodsFinite Element MethodsFinite Volume MethodsBoundary Element MethodsNumerical Linear AlgebraNumerical Methods for Nonlinear ProblemsNumerical Methods for Multiscale ProblemsMultigrid and Domain DecompositionComputational Fluid DynamicsMathematical Modelling in Structural MechanicsEnvironmental ModellingEngineering Applications Readership: Researchers in applied mathematics and computational physics. Keywords:Numerical Methods and Applications;General Finite Difference;General Numerical Linear Algebra;Parallel Computations;Nonlinear Problems and Multiscale Methods

Analytical Methods in Petroleum Upstream Applications

Author: Cesar Ovalles,Carl E. Rechsteiner Jr.

Publisher: CRC Press

ISBN: 1138001481

Category: Science

Page: 337

View: 9703

Effective measurement of the composition and properties of petroleum is essential for its exploration, production, and refining; however, new technologies and methodologies are not adequately documented in much of the current literature. Analytical Methods in Petroleum Upstream Applications explores advances in the analytical methods and instrumentation that allow more accurate determination of the components, classes of compounds, properties, and features of petroleum and its fractions. Recognized experts explore a host of topics, including: A petroleum molecular composition continuity model as a context for other analytical measurements A modern modular sampling system for use in the lab or the process area to collect and control samples for subsequent analysis The importance of oil-in-water measurements and monitoring The chemical and physical properties of heavy oils, their fractions, and products from their upgrading Analytical measurements using gas chromatography and nuclear magnetic resonance (NMR) applications Asphaltene and heavy ends analysis Chemometrics and modeling approaches for understanding petroleum composition and properties to improve upstream, midstream, and downstream operations Due to the renaissance of gas and oil production in North America, interest has grown in analytical methods for a wide range of applications. The understanding provided in this text is designed to help chemists, geologists, and chemical and petroleum engineers make more accurate estimates of the crude value to specific refinery configurations, providing insight into optimum development and extraction schemes.

Advances in Dynamical Systems and Control

Author: Victor A. Sadovnichiy,Mikhail Z. Zgurovsky

Publisher: Springer

ISBN: 3319406736

Category: Technology & Engineering

Page: 471

View: 5250

Focused on recent advances, this book covers theoretical foundations as well as various applications. It presents modern mathematical modeling approaches to the qualitative and numerical analysis of solutions for complex engineering problems in physics, mechanics, biochemistry, geophysics, biology and climatology. Contributions by an international team of respected authors bridge the gap between abstract mathematical approaches, such as applied methods of modern analysis, algebra, fundamental and computational mechanics, nonautonomous and stochastic dynamical systems on the one hand, and practical applications in nonlinear mechanics, optimization, decision making theory and control theory on the other. As such, the book will be of interest to mathematicians and engineers working at the interface of these fields.

Recent Advances in Delay Differential and Difference Equations

Author: Ferenc Hartung,Mihaly Pituk

Publisher: Springer

ISBN: 3319082515

Category: Mathematics

Page: 263

View: 5729

Delay differential and difference equations serve as models for a range of processes in biology, physics, engineering and control theory. In this volume, the participants of the International Conference on Delay Differential and Difference Equations and Applications, Balatonfüred, Hungary, July 15-19, 2013 present recent research in this quickly-evolving field. The papers relate to the existence, asymptotic and oscillatory properties of the solutions; stability theory; numerical approximations; and applications to real world phenomena using deterministic and stochastic discrete and continuous dynamical systems.

Advances in Dynamic Game Theory

Numerical Methods, Algorithms, and Applications to Ecology and Economics

Author: Steffen Jorgensen,Marc Quincampoix,Thomas L. Vincent

Publisher: Springer Science & Business Media

ISBN: 0817645535

Category: Mathematics

Page: 718

View: 9843

This collection of selected contributions gives an account of recent developments in dynamic game theory and its applications, covering both theoretical advances and new applications of dynamic games in such areas as pursuit-evasion games, ecology, and economics. Written by experts in their respective disciplines, the chapters include stochastic and differential games; dynamic games and their applications in various areas, such as ecology and economics; pursuit-evasion games; and evolutionary game theory and applications. The work will serve as a state-of-the art account of recent advances in dynamic game theory and its applications for researchers, practitioners, and advanced students in applied mathematics, mathematical finance, and engineering.

Recent Advances in Optimization and its Applications in Engineering

Author: Moritz Diehl,Francois Glineur,Elias Jarlebring,Wim Michiels

Publisher: Springer Science & Business Media

ISBN: 9783642125980

Category: Mathematics

Page: 535

View: 4051

Mathematical optimization encompasses both a rich and rapidly evolving body of fundamental theory, and a variety of exciting applications in science and engineering. The present book contains a careful selection of articles on recent advances in optimization theory, numerical methods, and their applications in engineering. It features in particular new methods and applications in the fields of optimal control, PDE-constrained optimization, nonlinear optimization, and convex optimization. The authors of this volume took part in the 14th Belgian-French-German Conference on Optimization (BFG09) organized in Leuven, Belgium, on September 14-18, 2009. The volume contains a selection of reviewed articles contributed by the conference speakers as well as three survey articles by plenary speakers and two papers authored by the winners of the best talk and best poster prizes awarded at BFG09. Researchers and graduate students in applied mathematics, computer science, and many branches of engineering will find in this book an interesting and useful collection of recent ideas on the methods and applications of optimization.

Recent Advances in Computational Fluid Dynamics

Proceedings of the US/ROC (Taiwan) Joint Workshop on Recent Advances in Computational Fluid Dynamics

Author: C.C. Chao,Steven A. Orszag,W. Shyy

Publisher: Springer Science & Business Media

ISBN: 3642837336

Category: Science

Page: 532

View: 7565

From the preface: Fluid dynamics is an excellent example of how recent advances in computational tools and techniques permit the rapid advance of basic and applied science. The development of computational fluid dynamics (CFD) has opened new areas of research and has significantly supplemented information available from experimental measurements. Scientific computing is directly responsible for such recent developments as the secondary instability theory of transition to turbulence, dynamical systems analyses of routes to chaos, ideas on the geometry of turbulence, direct simulations of turbulence, three-dimensional full-aircraft flow analyses, and so on. We believe that CFD has already achieved a status in the tool-kit of fluid mechanicians equal to that of the classical scientific techniques of mathematical analysis and laboratory experiment.

Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances

Author: N.A

Publisher: Elsevier

ISBN: 9780080489469

Category: Science

Page: 400

View: 5384

The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wave emission, the role of essentially nonlinear wave phenomena. The specificity of the book is that analytical, numerical, and experimental approaches are presented together and complement each other. Special attention is paid on explaining the methodology, e.g. multiple time-scale asymptotic expansions, averaging and removal of resonances, in what concerns theory, high-resolution finite-volume schemes, in what concerns numerical simulations, and turntable experiments with stratified fluids, in what concerns laboratory simulations. A general introduction into GFD is given at the beginning to introduce the problematics for non-specialists. At the same time, recent new results on nonlinear geostrophic adjustment, nonlinear waves, and equatorial dynamics, including some exact results on the existence of the slow manifold, wave breaking, and nonlinear wave solutions are presented for the first time in a systematic manner. · Incorporates analytical, numerical and experimental approaches in the geophysical fluid dynamics context · Combination of essentials in GFD, of the description of analytical, numerical and experimental methods (tutorial part), and new results obtained by these methods (original part) · Provides the link between GFD and mechanics (averaging method, the method of normal forms); GFD and nonlinear physics (shocks, solitons, modons, anomalous transport, periodic nonlinear waves)

Recent Advances in Celestial and Space Mechanics

Author: Bernard Bonnard,Monique Chyba

Publisher: Springer

ISBN: 3319274643

Category: Mathematics

Page: 302

View: 5582

This book presents recent advances in space and celestial mechanics, with a focus on the N-body problem and astrodynamics, and explores the development and application of computational techniques in both areas. It highlights the design of space transfers with various modes of propulsion, like solar sailing and low-thrust transfers between libration point orbits, as well as a broad range of targets and applications, like rendezvous with near Earth objects. Additionally, it includes contributions on the non-integrability properties of the collinear three- and four-body problem, and on general conditions for the existence of stable, minimum energy configurations in the full N-body problem. A valuable resource for physicists and mathematicians with research interests in celestial mechanics, astrodynamics and optimal control as applied to space transfers, as well as for professionals and companies in the industry.

Advances in Numerical Simulation of Nonlinear Water Waves

Author: Qingwei Ma

Publisher: World Scientific

ISBN: 9812836500

Category: Mathematics

Page: 700

View: 3403

Most of the Earth''s surface is covered by water. Our everyday lives and activities are affected by water waves in oceans, such as the tsunami that occurred in the Indian Ocean on 26 December 2004. This indicates how important it is for us to fully understand water waves, in particular the very large ones. One way to do so is to perform numerical simulation based on the nonlinear theory. Considerable research advances have been made in this area over the past decade by developing various numerical methods and applying them to emerging problems; however, until now there has been no comprehensive book to reflect these advances. This unique volume aims to bridge this gap. This book contains 18 self-contained chapters written by more than 50 authors from 12 different countries, many of whom are world-leading experts in the field. Each chapter is based mainly on the pioneering work of the authors and their research teams over the past decades.The chapters altogether deal with almost all numerical methods that have so far been employed to simulate nonlinear water waves and cover many important and very interesting applications, such as overturning waves, breaking waves, waves generated by landslides, freak waves, solitary waves, tsunamis, sloshing waves, interaction of extreme waves with beaches, interaction with fixed structures, and interaction with free-response floating structures. Therefore, this book provides a comprehensive overview of the state-of-the-art research and key achievements in numerical modeling of nonlinear water waves, and serves as a unique reference for postgraduates, researchers and senior engineers working in industry.

Differential Equations, Bifurcations, and Chaos in Economics

Author: Wei-Bin Zhang

Publisher: World Scientific Publishing Company

ISBN: 9813106514

Category: Business & Economics

Page: 512

View: 5973

Although the application of differential equations to economics is a vast and vibrant area, the subject has not been systematically studied; it is often treated as a subsidiary part of mathematical economics textbooks. This book aims to fill that void by providing a unique blend of the theory of differential equations and their exciting applications to dynamic economics. Containing not just a comprehensive introduction to the applications of the theory of linear (and linearized) differential equations to economic analysis, the book also studies nonlinear dynamical systems, which have only been widely applied to economic analysis in recent years. It provides comprehensive coverage of the most important concepts and theorems in the theory of differential equations in a way that can be understood by any reader who has a basic knowledge of calculus and linear algebra. In addition to traditional applications of the theory to economic dynamics, the book includes many recent developments in different fields of economics.

Recent Advances in Contact Mechanics

Papers Collected at the 5th Contact Mechanics International Symposium (CMIS2009), April 28-30, 2009, Chania, Greece

Author: Georgios E. Stavroulakis

Publisher: Springer Science & Business Media

ISBN: 3642339670

Category: Technology & Engineering

Page: 422

View: 8233

Contact mechanics is an active research area with deep theoretical and numerical roots. The links between nonsmooth analysis and optimization with mechanics have been investigated intensively during the last decades, especially in Europe. The study of complementarity problems, variational -, quasivariational- and hemivariational inequalities arising in contact mechanics and beyond is a hot topic for interdisciplinary research and cooperation. The needs of industry for robust solution algorithms suitable for large scale applications and the regular updates of the respective elements in major commercial computational mechanics codes, demonstrate that this interaction is not restricted to the academic environment. The contributions of this book have been selected from the participants of the CMIS 2009 international conference which took place in Crete and continued a successful series of specialized contact mechanics conferences.

Current Advances in Mechanical Design and Production VII

Author: M.F. Hassan,S.M. Megahed

Publisher: Elsevier

ISBN: 9780080530147

Category: Technology & Engineering

Page: 664

View: 3455

The International Conference on Mechanical Design and Production has over the years established itself as an excellent forum for the exchange of ideas in these established fields. The first of these conferences was held in 1979. The seventh, and most recent, conference in the series was held in Cairo during February 15-17, 2000. International engineers and scientists gathered to exchange experiences and highlight the state-of-the-art research in the fields of mechanical design and production. In addition a heavy emphasis was placed on the issue of technology transfer. Over 100 papers were accepted for presentation at the conference. Current Advances in Mechanical Design & Production VII does not, however, attempt to publish the complete work presented but instead offers a sample that represents the quality and breadth of both the work and the conference. Ten invited papers and 54 ordinary papers have been selected for inclusion in these proceedings. They cover a range of basic and applied topics that can be classified into six main categories: System Dynamics, Solid Mechanics, Material Science, Manufacturing Processes, Design and Tribology, and Industrial Engineering and its Applications.

Understanding Nonlinear Dynamics

Author: Daniel Kaplan,Leon Glass

Publisher: Springer Science & Business Media

ISBN: 1461208238

Category: Mathematics

Page: 420

View: 6394

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.

Advances in Mathematical and Statistical Modeling

Author: Barry C. Arnold,N. Balakrishnan,Jose-Maria Sarabia Alegria,Roberto Minguez

Publisher: Springer Science & Business Media

ISBN: 9780817646264

Category: Mathematics

Page: 368

View: 4892

Enrique Castillo is a leading figure in several mathematical and engineering fields. Organized to honor Castillo’s significant contributions, this volume is an outgrowth of the "International Conference on Mathematical and Statistical Modeling," and covers recent advances in the field. Applications to safety, reliability and life-testing, financial modeling, quality control, general inference, as well as neural networks and computational techniques are presented.

Mathematical Techniques of Fractional Order Systems

Author: Ahmad Taher Azar,Ahmed G. Radwan,Sundarapandian Vaidyanathan

Publisher: Elsevier

ISBN: 012813593X

Category: Technology & Engineering

Page: 700

View: 2014

Mathematical Techniques of Fractional Order Systems illustrates advances in linear and nonlinear fractional-order systems relating to many interdisciplinary applications, including biomedical, control, circuits, electromagnetics and security. The book covers the mathematical background and literature survey of fractional-order calculus and generalized fractional-order circuit theorems from different perspectives in design, analysis and realizations, nonlinear fractional-order circuits and systems, the fractional-order memristive circuits and systems in design, analysis, emulators, simulation and experimental results. It is primarily meant for researchers from academia and industry, and for those working in areas such as control engineering, electrical engineering, computer science and information technology. This book is ideal for researchers working in the area of both continuous-time and discrete-time dynamics and chaotic systems. Discusses multidisciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes circuits and systems based on new nonlinear elements Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers Closes the gap between theoretical approaches and real-world applications Provides MATLAB® and Simulink code for many applications in the book

Recent Advances in Partial Differential Equations, Venice 1996

Proceedings of a Conference in Honor of the 70th Birthdays of Peter D. Lax and Louis Nirenberg : June 10-14, 1996, Venice, Italy

Author: Peter D. Lax,L. Nirenberg,Renato Spigler,Stephanos Venakides

Publisher: American Mathematical Soc.

ISBN: 9780821867594

Category: Mathematics

Page: 392

View: 9687

Lax and Nirenberg are two of the most distinguished mathematicians of our times. Their work on partial differential equations (PDEs) over the last half-century has dramatically advanced the subject and has profoundly influenced the course of mathematics. A huge part of the development in PDEs during this period has either been through their work, motivated by it or achieved by their postdocs and students. A large number of mathematicians honored these two exceptional scientists in a week-long conference in Venice (June 1996) on the occasion of their 70th birthdays. This volume contains the proceedings of the conference, which focused on the modern theory of nonlinear PDEs and their applications. Among the topics treated are turbulence, kinetic models of a rarefied gas, vortex filaments, dispersive waves, singular limits and blow-up solutions, conservation laws, Hamiltonian systems and others. The conference served as a forum for the dissemination of new scientific ideas and discoveries and enhanced scientific communication by bringing together such a large number of scientists working in related fields. THe event allowed the international mathematics community to honor two of its outstanding members.