Solving Differential Equations in R

Author: Karline Soetaert,Jeff Cash,Francesca Mazzia

Publisher: Springer Science & Business Media

ISBN: 3642280706

Category: Computers

Page: 248

View: 3819

DOWNLOAD NOW »
Mathematics plays an important role in many scientific and engineering disciplines. This book deals with the numerical solution of differential equations, a very important branch of mathematics. Our aim is to give a practical and theoretical account of how to solve a large variety of differential equations, comprising ordinary differential equations, initial value problems and boundary value problems, differential algebraic equations, partial differential equations and delay differential equations. The solution of differential equations using R is the main focus of this book. It is therefore intended for the practitioner, the student and the scientist, who wants to know how to use R for solving differential equations. However, it has been our goal that non-mathematicians should at least understand the basics of the methods, while obtaining entrance into the relevant literature that provides more mathematical background. Therefore, each chapter that deals with R examples is preceded by a chapter where the theory behind the numerical methods being used is introduced. In the sections that deal with the use of R for solving differential equations, we have taken examples from a variety of disciplines, including biology, chemistry, physics, pharmacokinetics. Many examples are well-known test examples, used frequently in the field of numerical analysis.

Solving Differential Equations in R

Author: Karline Soetaert,Jeff Cash,Francesca Mazzia

Publisher: Springer

ISBN: 9783642280696

Category: Computers

Page: 248

View: 7342

DOWNLOAD NOW »
Mathematics plays an important role in many scientific and engineering disciplines. This book deals with the numerical solution of differential equations, a very important branch of mathematics. Our aim is to give a practical and theoretical account of how to solve a large variety of differential equations, comprising ordinary differential equations, initial value problems and boundary value problems, differential algebraic equations, partial differential equations and delay differential equations. The solution of differential equations using R is the main focus of this book. It is therefore intended for the practitioner, the student and the scientist, who wants to know how to use R for solving differential equations. However, it has been our goal that non-mathematicians should at least understand the basics of the methods, while obtaining entrance into the relevant literature that provides more mathematical background. Therefore, each chapter that deals with R examples is preceded by a chapter where the theory behind the numerical methods being used is introduced. In the sections that deal with the use of R for solving differential equations, we have taken examples from a variety of disciplines, including biology, chemistry, physics, pharmacokinetics. Many examples are well-known test examples, used frequently in the field of numerical analysis.

Simulation and Inference for Stochastic Differential Equations

With R Examples

Author: Stefano M. Iacus

Publisher: Springer Science & Business Media

ISBN: 9780387758398

Category: Computers

Page: 286

View: 1592

DOWNLOAD NOW »
This book covers a highly relevant and timely topic that is of wide interest, especially in finance, engineering and computational biology. The introductory material on simulation and stochastic differential equation is very accessible and will prove popular with many readers. While there are several recent texts available that cover stochastic differential equations, the concentration here on inference makes this book stand out. No other direct competitors are known to date. With an emphasis on the practical implementation of the simulation and estimation methods presented, the text will be useful to practitioners and students with minimal mathematical background. What’s more, because of the many R programs, the information here is appropriate for many mathematically well educated practitioners, too.

Differential Equation Analysis in Biomedical Science and Engineering

Partial Differential Equation Applications with R

Author: William E. Schiesser

Publisher: John Wiley & Sons

ISBN: 1118705165

Category: Mathematics

Page: 344

View: 4378

DOWNLOAD NOW »
Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the computed numerical solutions and is a valuable resource for dealing with a broad class of linear and nonlinear partial differential equations. The author’s primary focus is on models expressed as systems of PDEs, which generally result from including spatial effects so that the PDE dependent variables are functions of both space and time, unlike ordinary differential equation (ODE) systems that pertain to time only. As such, the book emphasizes details of the numerical algorithms and how the solutions were computed. Featuring computer-based mathematical models for solving real-world problems in the biological and biomedical sciences and engineering, the book also includes: R routines to facilitate the immediate use of computation for solving differential equation problems without having to first learn the basic concepts of numerical analysis and programming for PDEs Models as systems of PDEs and associated initial and boundary conditions with explanations of the associated chemistry, physics, biology, and physiology Numerical solutions of the presented model equations with a discussion of the important features of the solutions Aspects of general PDE computation through various biomedical science and engineering applications Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R is an excellent reference for researchers, scientists, clinicians, medical researchers, engineers, statisticians, epidemiologists, and pharmacokineticists who are interested in both clinical applications and interpretation of experimental data with mathematical models in order to efficiently solve the associated differential equations. The book is also useful as a textbook for graduate-level courses in mathematics, biomedical science and engineering, biology, biophysics, biochemistry, medicine, and engineering.

Numerical Analysis Using R

Solutions to ODEs and PDEs

Author: Graham W. Griffiths

Publisher: Cambridge University Press

ISBN: 131665415X

Category: Mathematics

Page: N.A

View: 1047

DOWNLOAD NOW »
This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.

Using R for Numerical Analysis in Science and Engineering

Author: Victor A. Bloomfield

Publisher: CRC Press

ISBN: 1498786626

Category: Mathematics

Page: 359

View: 352

DOWNLOAD NOW »
Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.

The R Book

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 1118448960

Category: Mathematics

Page: 1080

View: 6369

DOWNLOAD NOW »
Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. This edition: Features full colour text and extensive graphics throughout. Introduces a clear structure with numbered section headings to help readers locate information more efficiently. Looks at the evolution of R over the past five years. Features a new chapter on Bayesian Analysis and Meta-Analysis. Presents a fully revised and updated bibliography and reference section. Is supported by an accompanying website allowing examples from the text to be run by the user. Praise for the first edition: ‘…if you are an R user or wannabe R user, this text is the one that should be on your shelf. The breadth of topics covered is unsurpassed when it comes to texts on data analysis in R.’ (The American Statistician, August 2008) ‘The High-level software language of R is setting standards in quantitative analysis. And now anybody can get to grips with it thanks to The R Book…’ (Professional Pensions, July 2007)

Nonlinear Parameter Optimization Using R Tools

Author: John C. Nash

Publisher: John Wiley & Sons

ISBN: 1118883969

Category: Mathematics

Page: 304

View: 3502

DOWNLOAD NOW »
Nonlinear Parameter Optimization Using R John C. Nash, Telfer School of Management, University of Ottawa, Canada A systematic and comprehensive treatment of optimization software using R In recent decades, optimization techniques have been streamlined by computational and artificial intelligence methods to analyze more variables, especially under non–linear, multivariable conditions, more quickly than ever before. Optimization is an important tool for decision science and for the analysis of physical systems used in engineering. Nonlinear Parameter Optimization with R explores the principal tools available in R for function minimization, optimization, and nonlinear parameter determination and features numerous examples throughout. Nonlinear Parameter Optimization with R: Provides a comprehensive treatment of optimization techniques Examines optimization problems that arise in statistics and how to solve them using R Enables researchers and practitioners to solve parameter determination problems Presents traditional methods as well as recent developments in R Is supported by an accompanying website featuring R code, examples and datasets Researchers and practitioners who have to solve parameter determination problems who are users of R but are novices in the field optimization or function minimization will benefit from this book. It will also be useful for scientists building and estimating nonlinear models in various fields such as hydrology, sports forecasting, ecology, chemical engineering, pharmaco-kinetics, agriculture, economics and statistics.

A Practical Guide to Ecological Modelling

Using R as a Simulation Platform

Author: Karline Soetaert,Peter M. J. Herman

Publisher: Springer Science & Business Media

ISBN: 1402086237

Category: Science

Page: 372

View: 3629

DOWNLOAD NOW »
Mathematical modelling is an essential tool in present-day ecological research. Yet for many ecologists it is still problematic to apply modelling in their research. In our experience, the major problem is at the conceptual level: proper understanding of what a model is, how ecological relations can be translated consistently into mathematical equations, how models are solved, steady states calculated and interpreted. Many textbooks jump over these conceptual hurdles to dive into detailed formulations or the mathematics of solution. This book attempts to fill that gap. It introduces essential concepts for mathematical modelling, explains the mathematics behind the methods, and helps readers to implement models and obtain hands-on experience. Throughout the book, emphasis is laid on how to translate ecological questions into interpretable models in a practical way. The book aims to be an introductory textbook at the undergraduate-graduate level, but will also be useful to seduce experienced ecologists into the world of modelling. The range of ecological models treated is wide, from Lotka-Volterra type of principle-seeking models to environmental or ecosystem models, and including matrix models, lattice models and sequential decision models. All chapters contain a concise introduction into the theory, worked-out examples and exercises. All examples are implemented in the open-source package R, thus taking away problems of software availability for use of the book. All code used in the book is available on a dedicated website.

Ordinary Differential Equations

Author: Wolfgang Walter

Publisher: Springer Science & Business Media

ISBN: 1461206014

Category: Mathematics

Page: 384

View: 2447

DOWNLOAD NOW »
Based on a translation of the 6th edition of Gewöhnliche Differentialgleichungen by Wolfgang Walter, this edition includes additional treatments of important subjects not found in the German text as well as material that is seldom found in textbooks, such as new proofs for basic theorems. This unique feature of the book calls for a closer look at contents and methods with an emphasis on subjects outside the mainstream. Exercises, which range from routine to demanding, are dispersed throughout the text and some include an outline of the solution. Applications from mechanics to mathematical biology are included and solutions of selected exercises are found at the end of the book. It is suitable for mathematics, physics, and computer science graduate students to be used as collateral reading and as a reference source for mathematicians. Readers should have a sound knowledge of infinitesimal calculus and be familiar with basic notions from linear algebra; functional analysis is developed in the text when needed.

Spline Collocation Methods for Partial Differential Equations

With Applications in R

Author: William E. Schiesser

Publisher: John Wiley & Sons

ISBN: 1119301033

Category: MATHEMATICS

Page: 576

View: 1270

DOWNLOAD NOW »
One-dimensional PDEs -- Multidimensional PDEs -- Navier-Stokes, Burgers equations -- Korteweg-deVries equation -- Maxwell equations -- Poisson-Nernst-Planck equations -- Fokker-Planck equation -- Fisher-Kolmogorov equation -- Klein-Gordon equation -- Boussinesq equation -- Cahn-Hilliard equation -- Camassa-Holm equation -- Burgers-Huxley equation -- Gierer-Meinhardt equations -- Keller-Segel equations -- Fitzhugh-Nagumo equations -- Euler-Poisson-Darboux equation -- Kuramoto-Sivashinsky equation -- Einstein-Maxwell equations

Differential Equations

A Problem Solving Approach Based on MATLAB

Author: P. Mohana Shankar

Publisher: CRC Press

ISBN: 1351385747

Category: Mathematics

Page: 448

View: 1609

DOWNLOAD NOW »
The book takes a problem solving approach in presenting the topic of differential equations. It provides a complete narrative of differential equations showing the theoretical aspects of the problem (the how's and why's), various steps in arriving at solutions, multiple ways of obtaining solutions and comparison of solutions. A large number of comprehensive examples are provided to show depth and breadth and these are presented in a manner very similar to the instructor's class room work. The examples contain solutions from Laplace transform based approaches alongside the solutions based on eigenvalues and eigenvectors and characteristic equations. The verification of the results in examples is additionally provided using Runge-Kutta offering a holistic means to interpret and understand the solutions. Wherever necessary, phase plots are provided to support the analytical results. All the examples are worked out using MATLAB® taking advantage of the Symbolic Toolbox and LaTex for displaying equations. With the subject matter being presented through these descriptive examples, students will find it easy to grasp the concepts. A large number of exercises have been provided in each chapter to allow instructors and students to explore various aspects of differential equations.

An Introduction to Partial Differential Equations

Author: Michael Renardy,Robert C. Rogers

Publisher: Springer Science & Business Media

ISBN: 0387216871

Category: Mathematics

Page: 434

View: 9205

DOWNLOAD NOW »
Partial differential equations are fundamental to the modeling of natural phenomena. The desire to understand the solutions of these equations has always had a prominent place in the efforts of mathematicians and has inspired such diverse fields as complex function theory, functional analysis, and algebraic topology. This book, meant for a beginning graduate audience, provides a thorough introduction to partial differential equations.

Differential Equations

Author: Paul Blanchard,Robert L. Devaney,Glen R. Hall

Publisher: Cengage Learning

ISBN: 1133388086

Category: Mathematics

Page: 864

View: 4389

DOWNLOAD NOW »
Incorporating an innovative modeling approach, this book for a one-semester differential equations course emphasizes conceptual understanding to help users relate information taught in the classroom to real-world experiences. Certain models reappear throughout the book as running themes to synthesize different concepts from multiple angles, and a dynamical systems focus emphasizes predicting the long-term behavior of these recurring models. Users will discover how to identify and harness the mathematics they will use in their careers, and apply it effectively outside the classroom. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Elementary differential equations

Author: William E. Boyce,Richard C. DiPrima

Publisher: Wiley

ISBN: 9780471433392

Category: Mathematics

Page: 622

View: 2656

DOWNLOAD NOW »
This revision of Boyce & DiPrima's text maintains its classic strengths: a contemporary approach with flexible chapter construction, clear exposition, and outstanding problems. Like previous editions, this revision is written from the viewpoint of the applied mathematician, focusing both on the theory and the practical applications of Differential Equations as they apply to engineering and the sciences. A perennial best seller designed for engineers and scientists who need to use Elementary Differential Equations in their work and studies. The CD-ROM includes: The award-winning ODE Architect software. The software's 14 modules enable you to build and solve your own ODEs, and to use simulations and multimedia to develop detailed mathematical models and concepts in a truly interactive environment. The ODE Architect Companion. The Companion extends the ideas featured in each multimedia module. The web-based learning tools include: Review & Study Guidelines. The Chapter Review Guidelines will help you prepare for quizzes and exams. Online Review Quizzes. The quizzes enable you to test your knowledge of key concepts and provide diagnostic feedback that references appropriate sections in the text. PowerPoint Slides. You can print these slides out for in-class note taking. Getting Started with ODE Architect. This guide will help you get up-and-running with ODE Architect's simulations and multimedia.

Differential Equations with Boundary Value Problems

Modern Methods and Applications

Author: James R. Brannan,William E. Boyce

Publisher: N.A

ISBN: 9780470902141

Category: Boundary value problems

Page: 963

View: 5862

DOWNLOAD NOW »
Unlike other books in the market, this second edition presents differential equations consistent with the way scientists and engineers use modern methods in their work. Technology is used freely, with more emphasis on modeling, graphical representation, qualitative concepts, and geometric intuition than on theoretical issues. It also refers to larger–scale computations that computer algebra systems and DE solvers make possible. And more exercises and examples involving working with data and devising the model provide scientists and engineers with the tools needed to model complex real–world situations.

Numerical Partial Differential Equations for Environmental Scientists and Engineers

A First Practical Course

Author: Daniel R. Lynch

Publisher: Springer Science & Business Media

ISBN: 0387236201

Category: Science

Page: 388

View: 8805

DOWNLOAD NOW »
For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.

System Dynamics Modeling with R

Author: Jim Duggan

Publisher: Springer

ISBN: 3319340433

Category: Computers

Page: 176

View: 2088

DOWNLOAD NOW »
This new interdisciplinary work presents system dynamics as a powerful approach to enable analysts build simulation models of social systems, with a view toward enhancing decision making. Grounded in the feedback perspective of complex systems, the book provides a practical introduction to system dynamics, and covers key concepts such as stocks, flows, and feedback. Societal challenges such as predicting the impact of an emerging infectious disease, estimating population growth, and assessing the capacity of health services to cope with demographic change can all benefit from the application of computer simulation. This text explains important building blocks of the system dynamics approach, including material delays, stock management heuristics, and how to model effects between different systemic elements. Models from epidemiology, health systems, and economics are presented to illuminate important ideas, and the R programming language is used to provide an open-source and interoperable way to build system dynamics models. System Dynamics Modeling with R also describes hands-on techniques that can enhance client confidence in system dynamic models, including model testing, model analysis, and calibration. Developed from the author’s course in system dynamics, this book is written for undergraduate and postgraduate students of management, operations research, computer science, and applied mathematics. Its focus is on the fundamental building blocks of system dynamics models, and its choice of R as a modeling language make it an ideal reference text for those wishing to integrate system dynamics modeling with related data analytic methods and techniques.

Applied Differential Equations

The Primary Course

Author: Vladimir A. Dobrushkin

Publisher: CRC Press

ISBN: 1498728359

Category: Mathematics

Page: 731

View: 6213

DOWNLOAD NOW »
A Contemporary Approach to Teaching Differential Equations Applied Differential Equations: An Introduction presents a contemporary treatment of ordinary differential equations (ODEs) and an introduction to partial differential equations (PDEs), including their applications in engineering and the sciences. Designed for a two-semester undergraduate course, the text offers a true alternative to books published for past generations of students. It enables students majoring in a range of fields to obtain a solid foundation in differential equations. The text covers traditional material, along with novel approaches to mathematical modeling that harness the capabilities of numerical algorithms and popular computer software packages. It contains practical techniques for solving the equations as well as corresponding codes for numerical solvers. Many examples and exercises help students master effective solution techniques, including reliable numerical approximations. This book describes differential equations in the context of applications and presents the main techniques needed for modeling and systems analysis. It teaches students how to formulate a mathematical model, solve differential equations analytically and numerically, analyze them qualitatively, and interpret the results.