Spectral Analysis of Time-series Data

Author: Rebecca M. Warner

Publisher: Guilford Press

ISBN: 9781572303386

Category: Social Science

Page: 225

View: 2005

This book provides a thorough introduction to methods for detecting and describing cyclic patterns in time-series data. It is written both for researchers and students new to the area and for those who have already collected time-series data but wish to learn new ways of understanding and presenting them. Facilitating the interpretation of observations of behavior, physiology, mood, perceptual threshold, social indicator variables, and other responses, the book focuses on practical applications and requires much less mathematical background than most comparable texts. Using real data sets and currently available software (SPSS for Windows), the author employs extensive examples to clarify key concepts. Topics covered include research design issues, preliminary data screening, identification and description of cycles, summary of results across time series, and assessment of relations between time series. Also considered are theoretical questions, problems of interpretation, and potential sources of artifact.

The SAGE Encyclopedia of Social Science Research Methods

Author: Michael Lewis-Beck,Alan E Bryman,Tim Futing Liao

Publisher: SAGE

ISBN: 9780761923633

Category: Social Science

Page: 1305

View: 4787

"The first encyclopedia to cover inclusively both quantitative and qualitative research approaches, this set provides clear explanations of 1,000 methodologies, avoiding mathematical equations when possible with liberal cross-referencing and bibliographies. Each volume includes a list of works cited, and the third contains a comprehensive index and lists of person names, organizations, books, tests, software, major concepts, surveys, and methodologies."--"Reference that rocks," American Libraries, May 2005.

Time Series Analysis for the Social Sciences

Author: Janet M. Box-Steffensmeier,John R. Freeman,Jon C. W. Pevehouse,Matthew P. Hitt

Publisher: Cambridge University Press

ISBN: 0521871166

Category: Political Science

Page: 272

View: 9175

This book provides instruction and examples of the core methods in time series econometrics, drawing from several main fields of the social sciences.

Graphics Recognition. Ten Years Review and Future Perspectives

6th International Workshop, GREC 2005, Hong Kong, China, August 25-26, 2005, Revised Selected Papers

Author: Wenyin Liu

Publisher: Springer Science & Business Media

ISBN: 3540347119

Category: Computers

Page: 428

View: 6365

This book constitutes the thoroughly refereed post-proceedings of the 6th International Workshop on Graphics Recognition, GREC 2005, held in Hong Kong, China in August 2005.The 37 revised full papers presented together with a panel discussion report were carefully selected and improved during two rounds of reviewing and revision. The papers are organized in topical sections on engineering drawings vectorization and recognition, symbol recognition, graphic image analysis, structural document analysis, sketching and online graphics recognition, curves and shape processing, and graphics recognition contest results.nbsp;

Time Series Analysis in Meteorology and Climatology

An Introduction

Author: Claude Duchon,Robert Hale

Publisher: John Wiley & Sons

ISBN: 1119960983

Category: Science

Page: 256

View: 2551

Time Series Analysis in Meteorology and Climatology provides an accessible overview of this notoriously difficult subject. Clearly structured throughout, the authors develop sufficient theoretical foundation to understand the basis for applying various analytical methods to a time series and show clearly how to interpret the results. Taking a unique approach to the subject, the authors use a combination of theory and application to real data sets to enhance student understanding throughout the book. This book is written for those students that have a data set in the form of a time series and are confronted with the problem of how to analyse this data. Each chapter covers the various methods that can be used to carry out this analysis with coverage of the necessary theory and its application. In the theoretical section topics covered include; the mathematical origin of spectrum windows, leakage of variance and understanding spectrum windows. The applications section includes real data sets for students to analyse. Scalar variables are used for ease of understanding for example air temperatures, wind speed and precipitation. Students are encouraged to write their own computer programmes and data sets are provided to enable them to recognize quickly whether their programme is working correctly- one data set is provided with artificial data and the other with real data where the students are required to physically interpret the results of their periodgram analysis. Based on the acclaimed and long standing course at the University of Oklahoma and part of the RMetS Advancing Weather and Climate Science Series, this book is distinct in its approach to the subject matter in that it is written specifically for readers in meteorology and climatology and uses a mix of theory and application to real data sets.

Time Series

Modeling, Computation, and Inference

Author: Raquel Prado,Mike West

Publisher: CRC Press

ISBN: 1439882754

Category: Mathematics

Page: 368

View: 9118

Focusing on Bayesian approaches and computations using simulation-based methods for inference, Time Series: Modeling, Computation, and Inference integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling and analysis, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and emerging topics at research frontiers. The book presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. The authors also explore the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian tools, such as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. They illustrate the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, and finance. Data sets, R and MATLAB® code, and other material are available on the authors’ websites. Along with core models and methods, this text offers sophisticated tools for analyzing challenging time series problems. It also demonstrates the growth of time series analysis into new application areas.

Machine Learning: ECML 2007

18th European Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007, Proceedings

Author: Joost N. Kok,Jacek Koronacki,Ramon Lopez de Mantaras,Dunja Mladenic,Stan Matwin

Publisher: Springer Science & Business Media

ISBN: 3540749578

Category: Computers

Page: 809

View: 3265

The two premier annual European conferences in the areas of machine learning and data mining have been collocated ever since the ?rst joint conference in Freiburg, 2001. The European Conference on Machine Learning (ECML) traces its origins to 1986, when the ?rst European Working Session on Learning was held in Orsay, France. The European Conference on Principles and Practice of KnowledgeDiscoveryinDatabases(PKDD) was?rstheldin1997inTrondheim, Norway. Over the years, the ECML/PKDD series has evolved into one of the largest and most selective international conferences in machine learning and data mining. In 2007, the seventh collocated ECML/PKDD took place during September 17–21 on the centralcampus of WarsawUniversityand in the nearby Staszic Palace of the Polish Academy of Sciences. The conference for the third time used a hierarchical reviewing process. We nominated 30 Area Chairs, each of them responsible for one sub-?eld or several closely related research topics. Suitable areas were selected on the basis of the submission statistics for ECML/PKDD 2006 and for last year’s International Conference on Machine Learning (ICML 2006) to ensure a proper load balance amongtheAreaChairs.AjointProgramCommittee(PC)wasnominatedforthe two conferences, consisting of some 300 renowned researchers, mostly proposed by the Area Chairs. This joint PC, the largest of the series to date, allowed us to exploit synergies and deal competently with topic overlaps between ECML and PKDD. ECML/PKDD 2007 received 592 abstract submissions. As in previous years, toassistthereviewersandtheAreaChairsintheir?nalrecommendationauthors had the opportunity to communicate their feedback after the reviewing phase.

Time Series Analysis and Its Applications

With R Examples

Author: Robert H. Shumway,David S. Stoffer

Publisher: Springer

ISBN: 3319524526

Category: Mathematics

Page: 562

View: 5869

The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book’s website for download, making all the data sets and scripts easy to load into R.

Applied Statistics: From Bivariate Through Multivariate Techniques

From Bivariate Through Multivariate Techniques

Author: Rebecca M. Warner

Publisher: SAGE

ISBN: 141299134X

Category: Mathematics

Page: 1172

View: 3951

Rebecca M. Warner's Applied Statistics: From Bivariate Through Multivariate Techniques, Second Edition provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked to think about the meaning of equations. Each chapter presents a complete empirical research example to illustrate the application of a specific method. Although SPSS examples are used throughout the book, the conceptual material will be helpful for users of different programs. Each chapter has a glossary and comprehension questions.

Key Concepts in Social Research Methods

Author: Roger Gomm

Publisher: Macmillan International Higher Education

ISBN: 1137175176

Category: Social Science

Page: 256

View: 5709

An in-depth glossary, this accessible book successfully introduces students to the key concepts and terms used in social research. Terms are organised alphabetically and fully cross-referenced for use of ease. Suggestions for further reading help to consolidate knowledge and aids understanding.

Handbook of Cognitive Aging

Interdisciplinary Perspectives

Author: Scott M. Hofer,Duane F Alwin

Publisher: SAGE

ISBN: 145227892X

Category: Psychology

Page: 744

View: 3144

"Provides a unique perspective. I am particularly impressed with the sections on innovative design and methods to investigate cognitive aging and the integrative perspectives. None of the existing texts covers this material to the same level." —Donna J. La Voie, Saint Louis University "The emphasis on integrating the literature with theoretical and methodological innovations could have a far-reaching impact on the field." —Deb McGinnis, Oakland University The Handbook of Cognitive Aging: Interdisciplinary Perspectives clarifies the differences in patterns and processes of cognitive aging. Along with a comprehensive review of current research, editors Scott M. Hofer and Duane F. Alwin provide a solid foundation for building a multidisciplinary agenda that will stimulate further rigorous research into these complex factors. Key Features Gathers the widest possible range of perspectives by including cognitive aging experts in various disciplines while maintaining a degree of unity across chapters Examines the limitations of the extant literature, particularly in research design and measurement, and offers new suggestions to guide future research Highlights the broad scope of the field with topics ranging from demography to development to neuroscience, offering the most complete coverage available on cognitive aging

The Spectral Analysis of Time Series

Author: Lambert H. Koopmans

Publisher: Elsevier

ISBN: 9780080541563

Category: Mathematics

Page: 366

View: 2535

To tailor time series models to a particular physical problem and to follow the working of various techniques for processing and analyzing data, one must understand the basic theory of spectral (frequency domain) analysis of time series. This classic book provides an introduction to the techniques and theories of spectral analysis of time series. In a discursive style, and with minimal dependence on mathematics, the book presents the geometric structure of spectral analysis. This approach makes possible useful, intuitive interpretations of important time series parameters and provides a unified framework for an otherwise scattered collection of seemingly isolated results. The books strength lies in its applicability to the needs of readers from many disciplines with varying backgrounds in mathematics. It provides a solid foundation in spectral analysis for fields that include statistics, signal process engineering, economics, geophysics, physics, and geology. Appendices provide details and proofs for those who are advanced in math. Theories are followed by examples and applications over a wide range of topics such as meteorology, seismology, and telecommunications. Topics covered include Hilbert spaces; univariate models for spectral analysis; multivariate spectral models; sampling, aliasing, and discrete-time models; real-time filtering; digital filters; linear filters; distribution theory; sampling properties ofspectral estimates; and linear prediction. Hilbert spaces univariate models for spectral analysis multivariate spectral models sampling, aliasing, and discrete-time models real-time filtering digital filters linear filters distribution theory sampling properties of spectral estimates linear prediction

Multivariate Time Series Analysis

With R and Financial Applications

Author: Ruey S. Tsay

Publisher: John Wiley & Sons

ISBN: 1118617754

Category: Mathematics

Page: 520

View: 2791

An accessible guide to the multivariate time series toolsused in numerous real-world applications Multivariate Time Series Analysis: With R and FinancialApplications is the much anticipated sequel coming from one ofthe most influential and prominent experts on the topic of timeseries. Through a fundamental balance of theory and methodology,the book supplies readers with a comprehensible approach tofinancial econometric models and their applications to real-worldempirical research. Differing from the traditional approach to multivariate timeseries, the book focuses on reader comprehension by emphasizingstructural specification, which results in simplified parsimoniousVAR MA modeling. Multivariate Time Series Analysis: With R andFinancial Applications utilizes the freely available Rsoftware package to explore complex data and illustrate relatedcomputation and analyses. Featuring the techniques and methodologyof multivariate linear time series, stationary VAR models, VAR MAtime series and models, unitroot process, factor models, andfactor-augmented VAR models, the book includes: • Over 300 examples and exercises to reinforce thepresented content • User-friendly R subroutines and research presentedthroughout to demonstrate modern applications • Numerous datasets and subroutines to provide readerswith a deeper understanding of the material Multivariate Time Series Analysis is an ideal textbookfor graduate-level courses on time series and quantitative financeand upper-undergraduate level statistics courses in time series.The book is also an indispensable reference for researchers andpractitioners in business, finance, and econometrics.



Author: N.A

Publisher: N.A


Category: Sociology

Page: N.A

View: 2687