Statistics for Mining Engineering

Author: Jacek M. Czaplicki

Publisher: CRC Press

ISBN: 1138001139

Category: Mathematics

Page: 288

View: 8713

Many areas of mining engineering gather and use statistical information, provided by observing the actual operation of equipment, their systems, the development of mining works, surface subsidence that accompanies underground mining, displacement of rocks surrounding surface pits and underground drives and longwalls, amongst others. In addition, the actual modern machines used in surface mining are equipped with diagnostic systems that automatically trace all important machine parameters and send this information to the main producer’s computer. Such data not only provide information on the technical properties of the machine but they also have a statistical character. Furthermore, all information gathered during stand and lab investigations where parts, assemblies and whole devices are tested in order to prove their usefulness, have a stochastic character. All of these materials need to be developed statistically and, more importantly, based on these results mining engineers must make decisions whether to undertake actions, connected with the further operation of the machines, the further development of the works, etc. For these reasons, knowledge of modern statistics is necessary for mining engineers; not only as to how statistical analysis of data should be conducted and statistical synthesis should be done, but also as to understanding the results obtained and how to use them to make appropriate decisions in relation to the mining operation. This book on statistical analysis and synthesis starts with a short repetition of probability theory and also includes a special section on statistical prediction. The text is illustrated with many examples taken from mining practice; moreover the tables required to conduct statistical inference are included.

Handbook of Statistical Analysis and Data Mining Applications

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 668

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications

Author: Gary Miner,John Elder IV,Andrew Fast,Thomas Hill,Robert Nisbet,Dursun Delen

Publisher: Academic Press

ISBN: 0123870119

Category: Mathematics

Page: 1000

View: 6965

Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications brings together all the information, tools and methods a professional will need to efficiently use text mining applications and statistical analysis. Winner of a 2012 PROSE Award in Computing and Information Sciences from the Association of American Publishers, this book presents a comprehensive how-to reference that shows the user how to conduct text mining and statistically analyze results. In addition to providing an in-depth examination of core text mining and link detection tools, methods and operations, the book examines advanced preprocessing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection using real world example tutorials in such varied fields as corporate, finance, business intelligence, genomics research, and counterterrorism activities. The world contains an unimaginably vast amount of digital information which is getting ever vaster ever more rapidly. This makes it possible to do many things that previously could not be done: spot business trends, prevent diseases, combat crime and so on. Managed well, the textual data can be used to unlock new sources of economic value, provide fresh insights into science and hold governments to account. As the Internet expands and our natural capacity to process the unstructured text that it contains diminishes, the value of text mining for information retrieval and search will increase dramatically. Extensive case studies, most in a tutorial format, allow the reader to 'click through' the example using a software program, thus learning to conduct text mining analyses in the most rapid manner of learning possible Numerous examples, tutorials, power points and datasets available via companion website on Glossary of text mining terms provided in the appendix

Stochastic Modeling and Mathematical Statistics

A Text for Statisticians and Quantitative Scientists

Author: Francisco J. Samaniego

Publisher: CRC Press

ISBN: 1466560479

Category: Mathematics

Page: 622

View: 8109

Provides a Solid Foundation for Statistical Modeling and Inference and Demonstrates Its Breadth of Applicability Stochastic Modeling and Mathematical Statistics: A Text for Statisticians and Quantitative Scientists addresses core issues in post-calculus probability and statistics in a way that is useful for statistics and mathematics majors as well as students in the quantitative sciences. The book’s conversational tone, which provides the mathematical justification behind widely used statistical methods in a reader-friendly manner, and the book’s many examples, tutorials, exercises and problems for solution, together constitute an effective resource that students can read and learn from and instructors can count on as a worthy complement to their lectures. Using classroom-tested approaches that engage students in active learning, the text offers instructors the flexibility to control the mathematical level of their course. It contains the mathematical detail that is expected in a course for "majors" but is written in a way that emphasizes the intuitive content in statistical theory and the way theoretical results are used in practice. More than 1000 exercises and problems at varying levels of difficulty and with a broad range of topical focus give instructors many options in assigning homework and provide students with many problems on which to practice and from which to learn.

Discrete Simulation and Animation for Mining Engineers

Author: John R. Sturgul

Publisher: CRC Press

ISBN: 1482254425

Category: Mathematics

Page: 600

View: 9068

General Purpose Simulation System (GPSS) is a special computer programming language primarily used to simulate what can be classified as discrete systems. A discrete system is one where, at any given instant in time, a countable number of things can take place. The basic operation of a mine itself can be considered such a system. Discrete Simulation and Animation for Mining Engineers explains how to model mining systems using GPSS/H® and PROOF® by Wolverine Software Corporation. Employing a unique approach that encourages engagement from the start, the text discusses animation first, and then slowly introduces simulation language. As each new topic is covered, an animation is provided to illustrate the key concepts. Leveraging valuable insight gained from the author’s extensive experience modeling mines around the world, the book: Describes how to apply discrete system simulation to mines Shows how to make those simulations come alive with animation Includes real-world examples and exercises that hone practical problem-solving skills Written by a mining engineer for mining engineers and students of mining, Discrete Simulation and Animation for Mining Engineers offers a comprehensive yet accessible treatment of mine simulation and animation useful in increasing the efficiency of industrial mining processes.

Statistical and Machine-Learning Data Mining:

Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition

Author: Bruce Ratner

Publisher: CRC Press

ISBN: 1351652389

Category: Computers

Page: 662

View: 946

The third edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. is a compilation of new and creative data mining techniques, which address the scaling-up of the framework of classical and modern statistical methodology, for predictive modeling and analysis of big data. SM-DM provides proper solutions to common problems facing the newly minted data scientist in the data mining discipline. Its presentation focuses on the needs of the data scientists (commonly known as statisticians, data miners and data analysts), delivering practical yet powerful, simple yet insightful quantitative techniques, most of which use the "old" statistical methodologies improved upon by the new machine learning influence.

Data Mining for Scientific and Engineering Applications

Author: R.L. Grossman,C. Kamath,P. Kegelmeyer,V. Kumar,R. Namburu

Publisher: Springer Science & Business Media

ISBN: 1461517338

Category: Computers

Page: 605

View: 2871

Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.

The Elements of Statistical Learning

Data Mining, Inference, and Prediction

Author: Trevor Hastie,Robert Tibshirani,Jerome Friedman

Publisher: Springer Science & Business Media

ISBN: 0387216065

Category: Mathematics

Page: 536

View: 6795

During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book’s coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book. This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on methods for “wide” data (p bigger than n), including multiple testing and false discovery rates. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.

Evolutionary and Revolutionary Technologies for Mining

Author: National Research Council,Division on Engineering and Physical Sciences,Division on Earth and Life Studies,Board on Earth Sciences and Resources,National Materials Advisory Board,Committee on Earth Resources,Committee on Technologies for the Mining Industry

Publisher: National Academies Press

ISBN: 9780309169837

Category: Science

Page: 102

View: 2957

The Office of Industrial Technologies (OIT) of the U. S. Department of Energy commissioned the National Research Council (NRC) to undertake a study on required technologies for the Mining Industries of the Future Program to complement information provided to the program by the National Mining Association. Subsequently, the National Institute for Occupational Safety and Health also became a sponsor of this study, and the Statement of Task was expanded to include health and safety. The overall objectives of this study are: (a) to review available information on the U.S. mining industry; (b) to identify critical research and development needs related to the exploration, mining, and processing of coal, minerals, and metals; and (c) to examine the federal contribution to research and development in mining processes.

Statistical and Econometric Methods for Transportation Data Analysis, Second Edition

Author: Simon P. Washington,Matthew G. Karlaftis,Fred L. Mannering

Publisher: CRC Press

ISBN: 142008285X

Category: Technology & Engineering

Page: 544

View: 7030

The complexity, diversity, and random nature of transportation problems necessitates a broad analytical toolbox. Describing tools commonly used in the field, Statistical and Econometric Methods for Transportation Data Analysis, Second Edition provides an understanding of a broad range of analytical tools required to solve transportation problems. It includes a wide breadth of examples and case studies covering applications in various aspects of transportation planning, engineering, safety, and economics. After a solid refresher on statistical fundamentals, the book focuses on continuous dependent variable models and count and discrete dependent variable models. Along with an entirely new section on other statistical methods, this edition offers a wealth of new material. New to the Second Edition A subsection on Tobit and censored regressions An explicit treatment of frequency domain time series analysis, including Fourier and wavelets analysis methods New chapter that presents logistic regression commonly used to model binary outcomes New chapter on ordered probability models New chapters on random-parameter models and Bayesian statistical modeling New examples and data sets Each chapter clearly presents fundamental concepts and principles and includes numerous references for those seeking additional technical details and applications. To reinforce a practical understanding of the modeling techniques, the data sets used in the text are offered on the book’s CRC Press web page. PowerPoint and Word presentations for each chapter are also available for download.

Statistical Evaluations in Exploration for Mineral Deposits

Author: Friedrich-Wilhelm Wellmer

Publisher: Springer Science & Business Media

ISBN: 3642602622

Category: Science

Page: 379

View: 2798

Statistical evaluations of exploration data are the basis for decisions to be made at various stages of an exploration project. In contrast to other geostatistical books, Statistical Evaluations in Exploration for Mineral Deposits focuses not only on theory, but examples are also given, frequently originating from experience in mineral exploration by the author who worked worldwide for a mining company. Together with its companion volume, Economic Evaluations in Exploration, the book illustrates methods used in exploration campaigns and mining activities. It is intended as a vademecum for geologists who are forced to make quick decisions regarding an exploration project. It also addresses scientists and students involved in teaching or in mineral economic evaluations, recommendations or decisions.

Statistical Methods for Financial Engineering

Author: Bruno Remillard

Publisher: CRC Press

ISBN: 1439856958

Category: Business & Economics

Page: 496

View: 3323

While many financial engineering books are available, the statistical aspects behind the implementation of stochastic models used in the field are often overlooked or restricted to a few well-known cases. Statistical Methods for Financial Engineering guides current and future practitioners on implementing the most useful stochastic models used in financial engineering. After introducing properties of univariate and multivariate models for asset dynamics as well as estimation techniques, the book discusses limits of the Black-Scholes model, statistical tests to verify some of its assumptions, and the challenges of dynamic hedging in discrete time. It then covers the estimation of risk and performance measures, the foundations of spot interest rate modeling, Lévy processes and their financial applications, the properties and parameter estimation of GARCH models, and the importance of dependence models in hedge fund replication and other applications. It concludes with the topic of filtering and its financial applications. This self-contained book offers a basic presentation of stochastic models and addresses issues related to their implementation in the financial industry. Each chapter introduces powerful and practical statistical tools necessary to implement the models. The author not only shows how to estimate parameters efficiently, but he also demonstrates, whenever possible, how to test the validity of the proposed models. Throughout the text, examples using MATLAB® illustrate the application of the techniques to solve real-world financial problems. MATLAB and R programs are available on the author’s website.

Statistics and Probability for Engineering Applications with Microsoft Excel

Author: William J. DeCoursey

Publisher: Amsterdam : Newnes

ISBN: 9780750676182

Category: Technology & Engineering

Page: 396

View: 9767

More than ever, American industry- especially the semiconductor industry- is using statistical methods to improve its competitive edge in the world market. It is becoming more imperative that graduate engineers have solid statistical know-how, yet engineers in industry typically are not well-prepared to use statistics and they are fuzzy about how to apply statistical tools and techniques. This valuable reference makes statistical methods easier and more accessible to engineers. Although the book can be read sequentially, like a normal textbook, it is designed to be used as a handbook, pointing the reader to the topics and sections pertinent to a particular type of statistical problem. It contains the following features: * Covers all major topics treated in a standard college engineering statistics course, but minimizes the mathematical derivations and focuses on practical applications * Uses real data sets/case studies taken from electronics, electrical engineering, and other engineering fields, such as mechanical and chemical engineering * Contains numerous software examples using the powerful statistical functions of Excel In addition, the book provides an "engineering problem solver" section that directs the reader to the relevant section of the book for the problem they are trying to solve. The accompanying CD-ROM contains the Excel data sets for the examples and case studies given in the book, along with other statistical tools and software. * Filled with practical techniques directly applicable on the job * Contains hundreds of solved problems and case studies, using real data sets * Avoids unnecessary theory

Practical Statistics for Medical Research

Author: Douglas G. Altman

Publisher: CRC Press

ISBN: 9780412276309

Category: Mathematics

Page: 624

View: 5001

Most medical researchers, whether clinical or non-clinical, receive some background in statistics as undergraduates. However, it is most often brief, a long time ago, and largely forgotten by the time it is needed. Furthermore, many introductory texts fall short of adequately explaining the underlying concepts of statistics, and often are divorced from the reality of conducting and assessing medical research. Practical Statistics for Medical Research is a problem-based text for medical researchers, medical students, and others in the medical arena who need to use statistics but have no specialized mathematics background. The author draws on twenty years of experience as a consulting medical statistician to provide clear explanations to key statistical concepts, with a firm emphasis on practical aspects of designing and analyzing medical research. The text gives special attention to the presentation and interpretation of results and the many real problems that arise in medical research.