Stochastic Portfolio Theory

Author: E. Robert Fernholz

Publisher: Springer Science & Business Media

ISBN: 1475736991

Category: Business & Economics

Page: 178

View: 6534

DOWNLOAD NOW »
Stochastic portfolio theory is a mathematical methodology for constructing stock portfolios and for analyzing the effects induced on the behavior of these portfolios by changes in the distribution of capital in the market. Stochastic portfolio theory has both theoretical and practical applications: as a theoretical tool it can be used to construct examples of theoretical portfolios with specified characteristics and to determine the distributional component of portfolio return. This book is an introduction to stochastic portfolio theory for investment professionals and for students of mathematical finance. Each chapter includes a number of problems of varying levels of difficulty and a brief summary of the principal results of the chapter, without proofs.

Stochastic Calculus with Applications to Stochastic Portfolio Optimisation

Author: Daniel Michelbrink

Publisher: diplom.de

ISBN: 3836612879

Category: Mathematics

Page: 96

View: 5175

DOWNLOAD NOW »
Inhaltsangabe:Introduction: The present paper is about continuous time stochastic calculus and its application to stochastic portfolio selection problems. The paper is divided into two parts: The first part provides the mathematical framework and consists of Chapters 1 and 2, where it gives an insight into the theory of stochastic process and the theory of stochastic calculus. The second part, consisting of Chapters 3 and 4, applies the first part to problems in stochastic portfolio theory and stochastic portfolio optimisation. Chapter 1, "Stochastic Processes", starts with the construction of stochastic process. The significance of Markovian kernels is discussed and some examples of process and emigroups will be given. The simple normal-distribution will be extended to the multi-variate normal distribution, which is needed for introducing the Brownian motion process. Finally, another class of stochastic process is introduced which plays a central role in mathematical finance: the martingale. Chapter 2, "Stochastic Calculus", begins with the introduction of the stochastic integral. This integral is different to the Lebesgue-Stieltjes integral because of the randomness of the integrand and integrator. This is followed by the probably most important theorem in stochastic calculus: It o s formula. It o s formula is of central importance and most of the proofs of Chapters 3 and 4 are not possible without it. We continue with the notion of a stochastic differential equations. We introduce strong and weak solutions and a way to solve stochastic differential equations by removing the drift. The last section of Chapter 2 applies stochastic calculus to stochastic control. We will need stochastic control to solve some portfolio problems in Chapter 4. Chapter 3, "Stochastic Portfolio Theory", deals mainly with the problem of introducing an appropriate model for stock prices and portfolios. These models will be needed in Chapter 4. The first section of Chapter 3 introduces a stock market model, portfolios, the risk-less asset, consumption and labour income processes. The second section, Section 3.2, introduces the notion of relative return as well as portfolio generating functions. Relative return finds application in Chapter 4 where we deal with benchmark optimisation. Benchmark optimisation is optimising a portfolio with respect to a given benchmark portfolio. The final section of Chapter 3 contains some considerations about the long-term behaviour of [...]

Mathematical Modelling and Numerical Methods in Finance

Special Volume

Author: N.A

Publisher: Elsevier

ISBN: 0080931006

Category: Mathematics

Page: 684

View: 3710

DOWNLOAD NOW »
Mathematical finance is a prolific scientific domain in which there exists a particular characteristic of developing both advanced theories and practical techniques simultaneously. Mathematical Modelling and Numerical Methods in Finance addresses the three most important aspects in the field: mathematical models, computational methods, and applications, and provides a solid overview of major new ideas and results in the three domains. Coverage of all aspects of quantitative finance including models, computational methods and applications Provides an overview of new ideas and results Contributors are leaders of the field

Stochastic Calculus and Financial Applications

Author: J. Michael Steele

Publisher: Springer Science & Business Media

ISBN: 1468493051

Category: Mathematics

Page: 302

View: 7679

DOWNLOAD NOW »
Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH

Stochastic Control of Hereditary Systems and Applications

Author: Mou-Hsiung Chang

Publisher: Springer Science & Business Media

ISBN: 9780387758169

Category: Mathematics

Page: 406

View: 8805

DOWNLOAD NOW »
This monograph develops the Hamilton-Jacobi-Bellman theory via dynamic programming principle for a class of optimal control problems for stochastic hereditary differential equations (SHDEs) driven by a standard Brownian motion and with a bounded or an infinite but fading memory. These equations represent a class of stochastic infinite-dimensional systems that become increasingly important and have wide range of applications in physics, chemistry, biology, engineering and economics/finance. This monograph can be used as a reference for those who have special interest in optimal control theory and applications of stochastic hereditary systems.

Stochastic Integration and Differential Equations

Author: Philip Protter

Publisher: Springer

ISBN: 3662100614

Category: Mathematics

Page: 415

View: 5296

DOWNLOAD NOW »
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, the more general version of the Girsanov theorem due to Lenglart, the Kazamaki-Novikov criteria for exponential local martingales to be martingales, and a modern treatment of compensators. Chapter 4 treats sigma martingales (important in finance theory) and gives a more comprehensive treatment of martingale representation, including both the Jacod-Yor theory and Emery’s examples of martingales that actually have martingale representation (thus going beyond the standard cases of Brownian motion and the compensated Poisson process). New topics added include an introduction to the theory of the expansion of filtrations, a treatment of the Fefferman martingale inequality, and that the dual space of the martingale space H^1 can be identified with BMO martingales. Solutions to selected exercises are available at the web site of the author, with current URL http://www.orie.cornell.edu/~protter/books.html.

Continuous-time Stochastic Control and Optimization with Financial Applications

Author: Huyên Pham

Publisher: Springer Science & Business Media

ISBN: 3540895000

Category: Mathematics

Page: 232

View: 4450

DOWNLOAD NOW »
Stochastic optimization problems arise in decision-making problems under uncertainty, and find various applications in economics and finance. On the other hand, problems in finance have recently led to new developments in the theory of stochastic control. This volume provides a systematic treatment of stochastic optimization problems applied to finance by presenting the different existing methods: dynamic programming, viscosity solutions, backward stochastic differential equations, and martingale duality methods. The theory is discussed in the context of recent developments in this field, with complete and detailed proofs, and is illustrated by means of concrete examples from the world of finance: portfolio allocation, option hedging, real options, optimal investment, etc. This book is directed towards graduate students and researchers in mathematical finance, and will also benefit applied mathematicians interested in financial applications and practitioners wishing to know more about the use of stochastic optimization methods in finance.

Newsletter

Author: New Zealand Mathematical Society

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: N.A

View: 3913

DOWNLOAD NOW »

Wahrscheinlichkeitstheorie und Stochastische Prozesse

Author: Michael Mürmann

Publisher: Springer-Verlag

ISBN: 364238160X

Category: Mathematics

Page: 428

View: 4356

DOWNLOAD NOW »
Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​

Semi-Markov Models and Applications

Author: Jacques Janssen,Nikolaos Limnios

Publisher: Springer Science & Business Media

ISBN: 1461332885

Category: Mathematics

Page: 404

View: 5396

DOWNLOAD NOW »
This book presents a selection of papers presented to the Second Inter national Symposium on Semi-Markov Models: Theory and Applications held in Compiegne (France) in December 1998. This international meeting had the same aim as the first one held in Brussels in 1984 : to make, fourteen years later, the state of the art in the field of semi-Markov processes and their applications, bring together researchers in this field and also to stimulate fruitful discussions. The set of the subjects of the papers presented in Compiegne has a lot of similarities with the preceding Symposium; this shows that the main fields of semi-Markov processes are now well established particularly for basic applications in Reliability and Maintenance, Biomedicine, Queue ing, Control processes and production. A growing field is the one of insurance and finance but this is not really a surprising fact as the problem of pricing derivative products represents now a crucial problem in economics and finance. For example, stochastic models can be applied to financial and insur ance models as we have to evaluate the uncertainty of the future market behavior in order, firstly, to propose different measures for important risks such as the interest risk, the risk of default or the risk of catas trophe and secondly, to describe how to act in order to optimize the situation in time. Recently, the concept of VaR (Value at Risk) was "discovered" in portfolio theory enlarging so the fundamental model of Markowitz.

Controlled Markov Processes and Viscosity Solutions

Author: Wendell H. Fleming,Halil Mete Soner

Publisher: Springer Science & Business Media

ISBN: 0387310711

Category: Mathematics

Page: 429

View: 1706

DOWNLOAD NOW »
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. It covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters in this second edition introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games.

Advances in Mathematical Economics

Author: S. Kusuoka,A. Yamazaki

Publisher: Springer

ISBN: N.A

Category: Business & Economics

Page: 130

View: 1304

DOWNLOAD NOW »
A lot of economic problems can formulated as constrained optimizations and equilibration of their solutions. Various mathematical theories have been supplying economists with indispensable machineries for these problems arising in economic theory. Conversely, mathematicians have been stimulated by various mathematical difficulties raised by economic theories. The series is designed to bring together those mathematicians who were seriously interested in getting new challenging stimuli from economic theories with those economists who are seeking for effective mathematical tools for their researchers.

Stochastic Processes

From Physics to Finance

Author: Wolfgang Paul,Jörg Baschnagel

Publisher: Springer Science & Business Media

ISBN: 3319003275

Category: Science

Page: 280

View: 8710

DOWNLOAD NOW »
This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.

Monte Carlo Methods in Financial Engineering

Author: Paul Glasserman

Publisher: Springer Science & Business Media

ISBN: 0387216170

Category: Mathematics

Page: 596

View: 5773

DOWNLOAD NOW »
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Probability and Stochastic Modeling

Author: Vladimir I. Rotar

Publisher: CRC Press

ISBN: 1420010999

Category: Mathematics

Page: 508

View: 4807

DOWNLOAD NOW »
A First Course in Probability with an Emphasis on Stochastic Modeling Probability and Stochastic Modeling not only covers all the topics found in a traditional introductory probability course, but also emphasizes stochastic modeling, including Markov chains, birth-death processes, and reliability models. Unlike most undergraduate-level probability texts, the book also focuses on increasingly important areas, such as martingales, classification of dependency structures, and risk evaluation. Numerous examples, exercises, and models using real-world data demonstrate the practical possibilities and restrictions of different approaches and help students grasp general concepts and theoretical results. The text is suitable for majors in mathematics and statistics as well as majors in computer science, economics, finance, and physics. The author offers two explicit options to teaching the material, which is reflected in "routes" designated by special "roadside" markers. The first route contains basic, self-contained material for a one-semester course. The second provides a more complete exposition for a two-semester course or self-study.

Stochastic Modeling and Optimization

With Applications in Queues, Finance, and Supply Chains

Author: David D. Yao,Hanqin Zhang,Xun Yu Zhou

Publisher: Springer Science & Business Media

ISBN: 9780387955827

Category: Business & Economics

Page: 468

View: 949

DOWNLOAD NOW »
This books covers the broad range of research in stochastic models and optimization. Applications presented include networks, financial engineering, production planning, and supply chain management. Each contribution is aimed at graduate students working in operations research, probability, and statistics.

Stochastic Modeling in Economics and Finance

Author: Jitka Dupacova,J. Hurt,J. Stepan

Publisher: Springer Science & Business Media

ISBN: 0306481677

Category: Mathematics

Page: 386

View: 799

DOWNLOAD NOW »
In Part I, the fundamentals of financial thinking and elementary mathematical methods of finance are presented. The method of presentation is simple enough to bridge the elements of financial arithmetic and complex models of financial math developed in the later parts. It covers characteristics of cash flows, yield curves, and valuation of securities. Part II is devoted to the allocation of funds and risk management: classics (Markowitz theory of portfolio), capital asset pricing model, arbitrage pricing theory, asset & liability management, value at risk. The method explanation takes into account the computational aspects. Part III explains modeling aspects of multistage stochastic programming on a relatively accessible level. It includes a survey of existing software, links to parametric, multiobjective and dynamic programming, and to probability and statistics. It focuses on scenario-based problems with the problems of scenario generation and output analysis discussed in detail and illustrated within a case study.

Stochastic Optimization and Economic Models

Author: Jati Sengupta

Publisher: Springer Science & Business Media

ISBN: 9401730857

Category: Mathematics

Page: 373

View: 5579

DOWNLOAD NOW »
This book presents the main applied aspects of stochas tic optimization in economic models. Stochastic processes and control theory are used under optimization to illustrate the various economic implications of optimal decision rules. Unlike econometrics which deals with estimation, this book emphasizes the decision-theoretic basis of uncertainty specified by the stochastic point of view. Methods of ap plied stochastic control using stochastic processes have now reached an exciti~g phase, where several disciplines like systems engineering, operations research and natural reso- ces interact along with the conventional fields such as mathematical economics, finance and control systems. Our objective is to present a critical overview of this broad terrain from a multidisciplinary viewpoint. In this attempt we have at times stressed viewpoints other than the purely economic one. We believe that the economist would find it most profitable to learn from the other disciplines where stochastic optimization has been successfully applied. It is in this spirit that we have discussed in some detail the following major areas: A. Portfolio models in ·:finance, B. Differential games under uncertainty, c. Self-tuning regulators, D. Models of renewable resources under uncertainty, and ix x PREFACE E. Nonparametric methods of efficiency measurement. Stochastic processes are now increasingly used in economic models to understand the various adaptive behavior implicit in the formulation of expectation and its application in decision rules which are optimum in some sense.

Essentials of Stochastic Finance

Facts, Models, Theory

Author: Albert N. Shiryaev

Publisher: World Scientific

ISBN: 9812385193

Category: Electronic books

Page: 852

View: 5935

DOWNLOAD NOW »
This important book provides information necessary for those dealing with stochastic calculus and pricing in the models of financial markets operating under uncertainty; introduces the reader to the main concepts, notions and results of stochastic financial mathematics; and develops applications of these results to various kinds of calculations required in financial engineering. It also answers the requests of teachers of financial mathematics and engineering by making a bias towards probabilistic and statistical ideas and the methods of stochastic calculus in the analysis of market risks.