The Fractional Laplacian

Author: C. Pozrikidis

Publisher: CRC Press

ISBN: 1498746160

Category: Mathematics

Page: 278

View: 9602

DOWNLOAD NOW »
The fractional Laplacian, also called the Riesz fractional derivative, describes an unusual diffusion process associated with random excursions. The Fractional Laplacian explores applications of the fractional Laplacian in science, engineering, and other areas where long-range interactions and conceptual or physical particle jumps resulting in an irregular diffusive or conductive flux are encountered. Presents the material at a level suitable for a broad audience of scientists and engineers with rudimentary background in ordinary differential equations and integral calculus Clarifies the concept of the fractional Laplacian for functions in one, two, three, or an arbitrary number of dimensions defined over the entire space, satisfying periodicity conditions, or restricted to a finite domain Covers physical and mathematical concepts as well as detailed mathematical derivations Develops a numerical framework for solving differential equations involving the fractional Laplacian and presents specific algorithms accompanied by numerical results in one, two, and three dimensions Discusses viscous flow and physical examples from scientific and engineering disciplines Written by a prolific author well known for his contributions in fluid mechanics, biomechanics, applied mathematics, scientific computing, and computer science, the book emphasizes fundamental ideas and practical numerical computation. It includes original material and novel numerical methods.

Nonlocal Diffusion and Applications

Author: Claudia Bucur,Enrico Valdinoci

Publisher: Springer

ISBN: 3319287397

Category: Mathematics

Page: 155

View: 5221

DOWNLOAD NOW »
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

Fractional Order Systems

Optimization, Control, Circuit Realizations and Applications

Author: Ahmad Taher Azar,Ahmed G. Radwan,Sundarapandian Vaidyanathan

Publisher: Academic Press

ISBN: 0128163089

Category: Technology & Engineering

Page: 741

View: 7381

DOWNLOAD NOW »
Fractional Order Systems: Optimization, Control, Circuit Realizations and Applications consists of 21 contributed chapters by subject experts. Chapters offer practical solutions and novel methods for recent research problems in the multidisciplinary applications of fractional order systems, such as FPGA, circuits, memristors, control algorithms, photovoltaic systems, robot manipulators, oscillators, etc. This book is ideal for researchers working in the modeling and applications of both continuous-time and discrete-time dynamics and chaotic systems. Researchers from academia and industry who are working in research areas such as control engineering, electrical engineering, mechanical engineering, computer science, and information technology will find the book most informative. Discusses multi-disciplinary applications with new fundamentals, modeling, analysis, design, realization and experimental results Includes new circuits and systems based on the new nonlinear elements Covers most of the linear and nonlinear fractional-order theorems that will solve many scientific issues for researchers Closes the gap between theoretical approaches and real-world applications Provides MATLAB® and Simulink code for many of the applications in the book

Fractional Partial Differential Equations and Their Numerical Solutions

Author: Boling Guo,Xueke Pu,Fenghui Huang

Publisher: World Scientific

ISBN: 9814667064

Category: Mathematics

Page: 348

View: 1169

DOWNLOAD NOW »
This book aims to introduce some new trends and results on the study of the fractional differential equations, and to provide a good understanding of this field to beginners who are interested in this field, which is the authors' beautiful hope. This book describes theoretical and numerical aspects of the fractional partial differential equations, including the authors' researches in this field, such as the fractional Nonlinear Schrödinger equations, fractional Landau–Lifshitz equations and fractional Ginzburg–Landau equations. It also covers enough fundamental knowledge on the fractional derivatives and fractional integrals, and enough background of the fractional PDEs. Contents:Physics BackgroundFractional Calculus and Fractional Differential EquationsFractional Partial Differential EquationsNumerical Approximations in Fractional CalculusNumerical Methods for the Fractional Ordinary Differential EquationsNumerical Methods for Fractional Partial Differential Equations Readership: Graduate students and researchers in mathematical physics, numerical analysis and computational mathematics. Key Features:This book covers the fundamentals of this field, especially for the beginnersThe book covers new trends and results in this fieldThe book covers numerical results, which will be of broad interests to researchersKeywords:Fractional Partial Differential Equations;Numerical Solutions

Partial Differential Equations and Geometric Measure Theory

Cetraro, Italy 2014

Author: Alessio Figalli,Enrico Valdinoci,Ireneo Peral

Publisher: Springer

ISBN: 3319740423

Category: Mathematics

Page: 216

View: 3172

DOWNLOAD NOW »
This book collects together lectures by some of the leaders in the field of partial differential equations and geometric measure theory. It features a wide variety of research topics in which a crucial role is played by the interaction of fine analytic techniques and deep geometric observations, combining the intuitive and geometric aspects of mathematics with analytical ideas and variational methods. The problems addressed are challenging and complex, and often require the use of several refined techniques to overcome the major difficulties encountered. The lectures, given during the course "Partial Differential Equations and Geometric Measure Theory'' in Cetraro, June 2–7, 2014, should help to encourage further research in the area. The enthusiasm of the speakers and the participants of this CIME course is reflected in the text.

Potential Analysis of Stable Processes and its Extensions

Author: Krzysztof Bogdan,Tomasz Byczkowski,Tadeusz Kulczycki,Michal Ryznar,Renming Song,Zoran Vondracek

Publisher: Springer Science & Business Media

ISBN: 3642021417

Category: Mathematics

Page: 194

View: 9100

DOWNLOAD NOW »
Stable Lévy processes and related stochastic processes play an important role in stochastic modelling in applied sciences, in particular in financial mathematics. This book is about the potential theory of stable stochastic processes. It also deals with related topics, such as the subordinate Brownian motions (including the relativistic process) and Feynman–Kac semigroups generated by certain Schrödinger operators. The authors focus on classes of stable and related processes that contain the Brownian motion as a special case. This is the first book devoted to the probabilistic potential theory of stable stochastic processes, and, from the analytical point of view, of the fractional Laplacian. The introduction is accessible to non-specialists and provides a general presentation of the fundamental objects of the theory. Besides recent and deep scientific results the book also provides a didactic approach to its topic, as all chapters have been tested on a wide audience, including young mathematicians at a CNRS/HARP Workshop, Angers 2006. The reader will gain insight into the modern theory of stable and related processes and their potential analysis with a theoretical motivation for the study of their fine properties.

Variational Methods for Nonlocal Fractional Problems

Author: Giovanni Molica Bisci,Vicentiu D. Radulescu,Raffaella Servadei

Publisher: Cambridge University Press

ISBN: 1316571696

Category: Mathematics

Page: N.A

View: 5440

DOWNLOAD NOW »
This book provides researchers and graduate students with a thorough introduction to the variational analysis of nonlinear problems described by nonlocal operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations, plus their application to various processes arising in the applied sciences. The equations are examined from several viewpoints, with the calculus of variations as the unifying theme. Part I begins the book with some basic facts about fractional Sobolev spaces. Part II is dedicated to the analysis of fractional elliptic problems involving subcritical nonlinearities, via classical variational methods and other novel approaches. Finally, Part III contains a selection of recent results on critical fractional equations. A careful balance is struck between rigorous mathematics and physical applications, allowing readers to see how these diverse topics relate to other important areas, including topology, functional analysis, mathematical physics, and potential theory.

Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis

Fractional Dynamics, Network Dynamics, Classical Dynamics and Fractal Dynamics with Their Numerical Simulations

Author: Changpin Li,Yujiang Wu,Ruisong Ye

Publisher: World Scientific

ISBN: 981443647X

Category: Mathematics

Page: 416

View: 8899

DOWNLOAD NOW »
Nonlinear dynamics is still a hot and challenging topic. In this edited book, we focus on fractional dynamics, infinite dimensional dynamics defined by the partial differential equation, network dynamics, fractal dynamics, and their numerical analysis and simulation. Fractional dynamics is a new topic in the research field of nonlinear dynamics which has attracted increasing interest due to its potential applications in the real world, such as modeling memory processes and materials. In this part, basic theory for fractional differential equations and numerical simulations for these equations will be introduced and discussed. In the infinite dimensional dynamics part, we emphasize on numerical calculation and theoretical analysis, including constructing various numerical methods and computing the corresponding limit sets, etc. In the last part, we show interest in network dynamics and fractal dynamics together with numerical simulations as well as their applications. Contents:Gronwall Inequalities (Fanhai Zeng, Jianxiong Cao and Changpin Li)Existence and Uniqueness of the Solutions to the Fractional Differential Equations (Yutian Ma, Fengrong Zhang and Changpin Li)Finite Element Methods for Fractional Differential Equations (Changpin Li and Fanhai Zeng)Fractional Step Method for the Nonlinear Conservation Laws with Fractional Dissipation (Can Li and Weihua Deng)Error Analysis of Spectral Method for the Space and Time Fractional Fokker–Planck Equation (Tinggang Zhao and Haiyan Xuan)A Discontinuous Finite Element Method for a Type of Fractional Cauchy Problem (Yunying Zheng)Asymptotic Analysis of a Singularly Perturbed Parabolic Problem in a General Smooth Domain (Yu-Jiang Wu, Na Zhang and Lun-Ji Song)Incremental Unknowns Methods for the ADI and ADSI Schemes (Ai-Li Yang, Yu-Jiang Wu and Zhong-Hua Yang)Stability of a Collocated FV Scheme for the 3D Navier–Stokes Equations (Xu Li and Shu-qin Wang)Computing the Multiple Positive Solutions to p–Henon Equation on the Unit Square (Zhaoxiang Li and Zhonghua Yang)Multilevel WBIUs Methods for Reaction–Diffusion Equations (Yang Wang, Yu-Jiang Wu and Ai-Li Yang)Models and Dynamics of Deterministically Growing Networks (Weigang Sun, Jingyuan Zhang and Guanrong Chen)On Different Approaches to Synchronization of Spatiotemporal Chaos in Complex Networks (Yuan Chai and Li-Qun Chen)Chaotic Dynamical Systems on Fractals and Their Applications to Image Encryption (Ruisong Ye, Yuru Zou and Jian Lu)Planar Crystallographic Symmetric Tiling Patterns Generated From Invariant Maps (Ruisong Ye, Haiying Zhao and Yuanlin Ma)Complex Dynamics in a Simple Two-Dimensional Discrete System (Huiqing Huang and Ruisong Ye)Approximate Periodic Solutions of Damped Harmonic Oscillators with Delayed Feedback (Qian Guo)The Numerical Methods in Option Pricing Problem (Xiong Bo)Synchronization and Its Control Between Two Coupled Networks (Yongqing Wu and Minghai Lü) Readership: Senior undergraduates, postgraduates and experts in nonlinear dynamics with numerical analysis. Keywords:Fractional Dynamics;Infinite Dimensional Dynamics;Network Dynamics;Fractal DynamicsKey Features:The topics in this edited book are very hot and highly impressiveIssues and methods of such topics in this edited book have not been made available yetThe present edited book is suitable for various levels of researchers, such as senior undergraduates, postgraduates, and experts

Regional Analysis of Time-Fractional Diffusion Processes

Author: Fudong Ge,YangQuan Chen,Chunhai Kou

Publisher: Springer

ISBN: 3319728962

Category: Technology & Engineering

Page: 250

View: 7812

DOWNLOAD NOW »
This monograph provides an accessible introduction to the regional analysis of fractional diffusion processes. It begins with background coverage of fractional calculus, functional analysis, distributed parameter systems and relevant basic control theory. New research problems are then defined in terms of their actuation and sensing policies within the regional analysis framework. The results presented provide insight into the control-theoretic analysis of fractional-order systems for use in real-life applications such as hard-disk drives, sleep stage identification and classification, and unmanned aerial vehicle control. The results can also be extended to complex fractional-order distributed-parameter systems and various open questions with potential for further investigation are discussed. For instance, the problem of fractional order distributed-parameter systems with mobile actuators/sensors, optimal parameter identification, optimal locations/trajectory of actuators/sensors and regional actuation/sensing configurations are of great interest. The book’s use of illustrations and consistent examples throughout helps readers to understand the significance of the proposed fractional models and methodologies and to enhance their comprehension. The applications treated in the book run the gamut from environmental science to national security. Academics and graduate students working with cyber-physical and distributed systems or interested in the applications of fractional calculus will find this book to be an instructive source of state-of-the-art results and inspiration for further research.

Physics of Fractal Operators

Author: Bruce West,Mauro Bologna,Paolo Grigolini

Publisher: Springer Science & Business Media

ISBN: 9780387955544

Category: Mathematics

Page: 354

View: 6165

DOWNLOAD NOW »
This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.

Nonlocal Diffusion and Applications

Author: Claudia Bucur,Enrico Valdinoci

Publisher: Springer

ISBN: 3319287397

Category: Mathematics

Page: 155

View: 7684

DOWNLOAD NOW »
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions

Cetraro, Italy 2016

Author: José Antonio Carrillo,Manuel del Pino,Alessio Figalli,Giuseppe Mingione,Juan Luis Vázquez

Publisher: Springer

ISBN: 3319614940

Category: Mathematics

Page: 280

View: 2851

DOWNLOAD NOW »
Presenting a selection of topics in the area of nonlocal and nonlinear diffusions, this book places a particular emphasis on new emerging subjects such as nonlocal operators in stationary and evolutionary problems and their applications, swarming models and applications to biology and mathematical physics, and nonlocal variational problems. The authors are some of the most well-known mathematicians in this innovative field, which is presently undergoing rapid development. The intended audience includes experts in elliptic and parabolic equations who are interested in extending their expertise to the nonlinear setting, as well as Ph.D. or postdoctoral students who want to enter into the most promising research topics in the field.

Fractional Differential Equations

An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications

Author: Igor Podlubny

Publisher: Elsevier

ISBN: 9780080531984

Category: Mathematics

Page: 340

View: 7599

DOWNLOAD NOW »
This book is a landmark title in the continuous move from integer to non-integer in mathematics: from integer numbers to real numbers, from factorials to the gamma function, from integer-order models to models of an arbitrary order. For historical reasons, the word 'fractional' is used instead of the word 'arbitrary'. This book is written for readers who are new to the fields of fractional derivatives and fractional-order mathematical models, and feel that they need them for developing more adequate mathematical models. In this book, not only applied scientists, but also pure mathematicians will find fresh motivation for developing new methods and approaches in their fields of research. A reader will find in this book everything necessary for the initial study and immediate application of fractional derivatives fractional differential equations, including several necessary special functions, basic theory of fractional differentiation, uniqueness and existence theorems, analytical numerical methods of solution of fractional differential equations, and many inspiring examples of applications. A unique survey of many applications of fractional calculus Presents basic theory Includes a unified presentation of selected classical results, which are important for applications Provides many examples Contains a separate chapter of fractional order control systems, which opens new perspectives in control theory The first systematic consideration of Caputo's fractional derivative in comparison with other selected approaches Includes tables of fractional derivatives, which can be used for evaluation of all considered types of fractional derivatives

Dispersion in Heterogeneous Geological Formations

Author: Brian Berkowitz

Publisher: Springer Science & Business Media

ISBN: 9780792367796

Category: Mathematics

Page: 263

View: 1024

DOWNLOAD NOW »
In spite of many years of intensive study, our current abilities to quantify and predict contaminant migration in natural geological formations remain severely limited. The heterogeneity of these formations over a wide range of scales necessitates consideration of sophisticated transport theories. The evolution of such theories has escalated to the point that a review of the subject seems timely. While conceptual and mathematical developments were crucial to the introduction of these new approaches, there are now too many publications that contain theoretical abstractions without regard to real systems, or incremental improvements to existing theories which are known not to be applicable. This volume brings together articles representing a broad spectrum of state-of-the-art approaches for characterization and quantification of contaminant dispersion in heterogeneous porous media. Audience: The contributions are intended to be as accessible as possible to a wide readership of academics and professionals with diverse backgrounds such as earth sciences, subsurface hydrology, petroleum engineering, and soil physics.

Noncommutative Analysis, Operator Theory and Applications

Author: Daniel Alpay,Fabio Cipriani,Fabrizio Colombo,Daniele Guido,Irene Sabadini,Jean-Luc Sauvageot

Publisher: Birkhäuser

ISBN: 3319291165

Category: Mathematics

Page: 283

View: 2048

DOWNLOAD NOW »
This book illustrates several aspects of the current research activity in operator theory, operator algebras and applications in various areas of mathematics and mathematical physics. It is addressed to specialists but also to graduate students in several fields including global analysis, Schur analysis, complex analysis, C*-algebras, noncommutative geometry, operator algebras, operator theory and their applications. Contributors: F. Arici, S. Bernstein, V. Bolotnikov, J. Bourgain, P. Cerejeiras, F. Cipriani, F. Colombo, F. D'Andrea, G. Dell'Antonio, M. Elin, U. Franz, D. Guido, T. Isola, A. Kula, L.E. Labuschagne, G. Landi, W.A. Majewski, I. Sabadini, J.-L. Sauvageot, D. Shoikhet, A. Skalski, H. de Snoo, D. C. Struppa, N. Vieira, D.V. Voiculescu, and H. Woracek.